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Abstract
We consider hypersurfaces of products M ×ℝ with constant rth mean curvature H

r
≥ 0 (to 

be called H
r
-hypersurfaces), where M is an arbitrary Riemannian n-manifold. We develop 

a general method for constructing them and employ it to produce many examples for a 
variety of manifolds M,   including all simply connected space forms and the hyperbolic 
spaces ℍm

𝔽
 (rank one symmetric spaces of noncompact type). We construct and classify 

complete rotational H
r
(≥ 0)-hypersurfaces in ℍm

𝔽
×ℝ and in 𝕊n ×ℝ as well. They include 

spheres, Delaunay-type annuli and, in the case of ℍm

𝔽
×ℝ, entire graphs. We also construct 

and classify complete H
r
(≥ 0)-hypersurfaces of ℍm

𝔽
×ℝ which are invariant by either para-

bolic isometries or hyperbolic translations. We establish a Jellett–Liebmann-type theorem 
by showing that a compact, connected and strictly convex H

r
-hypersurface of ℍn ×ℝ or 

𝕊
n ×ℝ (n ≥ 3) is a rotational embedded sphere. Other uniqueness results for complete H

r

-hypersurfaces of these ambient spaces are obtained.
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1  Introduction

In his pioneering work [29], H. Rosenberg initiated the study of minimal and constant 
mean curvature hypersurfaces of product spaces M ×ℝ, where M is an arbitrary Rie-
mannian n-manifold. Since then, many results on this subject have been obtained by many 
authors, mostly in the particular case M is a simply connected space form.

Following this path, we approach here hypersurfaces of M ×ℝ with constant rth mean 
curvature Hr ≥ 0 (for some r ∈ {1,… , n} ), which we call Hr-hypersurfaces. Let us recall 
that the (nonnormalized) rth mean curvature Hr of a hypersurface is the rth elementary 
symmetric polynomial of its principal curvatures, so that it constitutes a natural extension 
of the mean curvature ( r = 1 ) and the Gauss–Kronecker curvature ( r = n).

We focus on constructing and classifying Hr-hypersurfaces of products M ×ℝ. With 
this purpose, we use a special type of graph built on families of parallel hypersurfaces of 
M. In fact, for any given constant Hr ≥ 0, we obtain Hr-graphs in M ×ℝ for those Rie-
mannian manifolds M which admit a local family of parallel hypersurfaces, each of them 
having constant principal curvatures. Following [4], such hypersurfaces are called isopara-
metric. We point out that many Riemannian manifolds M admit isoparametric hypersur-
faces, such as space forms, hyperbolic spaces, warped products and �(�, τ) spaces.

By suitably “gluing” pieces of Hr-graphs, we construct properly embedded Hr-hypersur-
faces in M ×ℝ when M is either the standard n-sphere �n or one of the hyperbolic spaces 
ℍ

m
𝔽
 (rank one symmetric spaces of noncompact type). In this setting, we show that there 

exists a rotational Hr-sphere in ℍm
𝔽
×ℝ if and only if Hr > C

�
(r), where the constant C

�
(r) 

is defined as the limit of the rth mean curvature of a geodesic sphere of ℍm
𝔽
 as its radius 

goes to infinity. (In particular, C
�
(r) is positive for 1 ≤ r < n = dimℍ

m
𝔽
 and vanishes for 

r = n .) On the other hand, as we also show, for any r ∈ {1,… , n} and any constant Hr > 0, 
there exists a rotational Hr-sphere in 𝕊n ×ℝ.

We remark that rotational hypersurfaces of a general product M ×ℝ are defined here as 
those which are foliated by horizontal geodesic spheres centered at an axis {o} ×ℝ, o ∈ M.

We provide other examples of properly embedded rotational Hr(> 0)-hypersurfaces in 
ℍ

m
𝔽
×ℝ and in 𝕊n ×ℝ as well, including Delaunay-type annuli and, in the case of ℍm

𝔽
×ℝ , 

entire graphs over ℍm
𝔽
. Then, we classify those complete connected rotational Hr(> 0)

-hypersurfaces of these product spaces whose height functions are Morse type (i.e., have 
isolated critical points), which include all the properly embedded rotational Hr(> 0)-hyper-
surfaces we obtain here.

We also construct and classify complete connected Hr(> 0)-hypersurfaces of ℍm
𝔽
×ℝ 

with no horizontal points (critical points of the height function) which are invariant by 
either parabolic or hyperbolic isometries of ℍm

𝔽
×ℝ

(in the latter case, only the real hyperbolic space ℍm
ℝ
∶= ℍ

n is considered).
Our methods work equally well for Hr-hypersurfaces with Hr = 0, the so called r-min-

imal hypersurfaces. By applying them, we obtain a one-parameter family of rotational, 
properly embedded catenoid-type r-minimal n-annuli in ℍm

𝔽
×ℝ. Similarly, we obtain a 

one-parameter family of rotational, properly embedded Delaunay-type r-minimal n-annuli 
in 𝕊n ×ℝ. Then, we show that these annuli are the only complete connected r-minimal 
rotational hypersurfaces of these product spaces (besides horizontal hyperplanes and, in 
the case r = n, cylinders over geodesic spheres).

Analogously to the case of Hr(> 0)-hypersurfaces, we construct and classify the com-
plete connected r-minimal hypersurfaces of ℍm

𝔽
×ℝ which are invariant by either parabolic 

or hyperbolic isometries of ℍm
𝔽
×ℝ.
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The study of Hr-hypersurfaces of a Riemannian manifold leads naturally to considera-
tions on their uniqueness properties. On this matter, Montiel and Ros [23] (see also [21]) 
showed the following Alexandrov-type theorem:

The only compact, connected and embedded Hr-hypersurfaces in ℝn, ℍn, or an open 
hemisphere of  �n are geodesic spheres.

In [15], this result was extended to the context of Hr-hypersurfaces of ℍn ×ℝ, where the 
geodesic spheres in the statement are replaced by rotational spheres.

Here, we establish uniqueness results for rotational Hr-spheres of ℍn ×ℝ and 𝕊n ×ℝ , 
n ≥ 3. The case n = 2 was settled in [1] (for r = 1 ) and in [17] (for r = 2 ). More precisely, 
we show that, for n ≥ 3, any compact connected strictly convex Hr-hypersurface � of either 
ℍ

n ×ℝ or 𝕊n ×ℝ is necessarily an embedded rotational sphere. Assuming � complete, 
instead of compact, the same conclusion holds if, in addition, the height function of � has 
a critical point and, in the case 𝛴 ⊂ ℍ

n ×ℝ , the least principal curvature of � is bounded 
away from zero. Finally, we show that, for n ≥ 3, any connected, properly immersed and 
strictly convex Hr(> 0)-hypersurface of  𝕊n ×ℝ is necessarily an embedded rotational Hr

-sphere.
It is worth mentioning that these uniqueness results constitute applications of the main 

theorems in [8], which concern convexity properties of hypersurfaces in M ×ℝ, M being 
either a Hadamard manifold or the sphere �n. Besides, the noncompact cases are based on 
height estimates we establish here for strictly convex vertical graphs in arbitrary products 
M ×ℝ.

The paper is organized as follows. In Sect. 2, we set notation and some basic concepts. 
In Sect. 3, we introduce graphs on parallel hypersurfaces and establish two key lemmas. In 
Sect. 4 (resp. Sect. 5), we construct and classify complete rotational Hr(> 0)-hypersurfaces 
(resp. r-minimal hypersurfaces) in ℍm

𝔽
×ℝ and 𝕊n ×ℝ, whereas in Sect. 6 (resp. Sect. 7) 

we do the same for complete translational ones, i.e, invariant by either parabolic or hyper-
bolic isometries. In Sect. 8, we prove the aforementioned uniqueness results for rotational 
Hr-spheres of ℚn

�
×ℝ .

2 � Preliminaries

Let � be an oriented hypersurface of a Riemannian manifold M
n+1

, n ≥ 2. Set ∇ for the 
Levi-Civita connection of M, N for the unit normal field of � and A for its shape operator 
with respect to N,  so that

where T� stand for the tangent bundle of � . The principal curvatures of �, that is, the 
eigenvalues of the shape operator A,  will be denoted by k1 ,… , kn.

Given an integer r ≥ 0, we define the (nonnormalized) rth mean curvature Hr of the 
hypersurface 𝛴 ⊂ M as:

AX = −∇XN, X ∈ T�,

(1)Hr ∶=

⎧⎪⎨⎪⎩

1 if r = 0.�
i1<⋯<ir

ki1 … kir if 1 ≤ r ≤ n.

0 if r > n.
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Notice that H1 and Hn are the nonnormalized mean curvature and Gauss–Kronecker curva-
ture functions of �, respectively, i.e.,

Definition 1  With the above notation, given a constant Hr ∈ ℝ, we say that 𝛴 ⊂ M is an 
Hr-hypersurface of M if its rth mean curvature is constant and equal to Hr. In the case 
Hr = 0 , we say that � is an r-minimal hypersurface of M.

Definition 2  A hypersurface 𝛴 ⊂ M is said to be convex at x ∈ � if, at this point, all the 
nonzero principal curvatures have the same sign. If, in addition, none of these principal 
curvatures is zero, then � is said to be strictly convex at x. We call � convex (resp. strictly 
convex) if it is convex (resp. strictly convex) at all of its points.

In some of our proofs, we shall consider the tangency principle obtained in [18]. Roughly 
speaking, this principle asserts that two Hr-hypersurfaces �1 and �2 which are tangent at a 
point—with one “above” the other in a neighborhood V of this point—must coincide on V,  
provided that one of them is strictly convex at one of its points (see [15, 18] for details). If, 
in addition, �1 and �2 are complete, then the continuation principle applies and gives that 
�1 = �2. Essentially, these tangency and continuation principles are due to the fact that the 
equation for prescribed rth mean curvature is elliptic (cf. [7, 27]).

2.1 � Hypersurfaces of M ×ℝ

The ambient spaces we shall consider are the products M
n+1

= Mn ×ℝ—where Mn is some 
Riemannian manifold—endowed with the standard product metric:

In this setting, we denote by �t the gradient of the projection �
ℝ
 of M ×ℝ on its second fac-

tor. Clearly, �t is parallel on M ×ℝ, that is,

Let � be a hypersurface of M ×ℝ . Its height function � and its angle function � are defined 
by the following identities:

A critical point of � is called horizontal, whereas a point on which � vanishes is called ver-
tical. Notice that x ∈ � is horizontal if and only if �(x) = ±1.

We shall denote the gradient field and the Hessian of a function � on � by ∇� and 
Hess � , respectively, that is,

It is easily checked that

Also, from (2) and (3), one has ∇X ∇� = −(�∇XN + X(�)N). Hence,

H1 = traceA and Hn = detA.

⟨ , ⟩ = ⟨ , ⟩M + dt2.

(2)∇X�t = 0 ∀X ∈ T(M ×ℝ).

� ∶= �
ℝ
�� and �(x) ∶= ⟨N(x), �t⟩, x ∈ �.

Hess � (X, Y) ∶= ⟨∇X∇� , Y⟩ ∀X, Y ∈ T(�).

(3)∇� = �t − �N and ∇� = −A∇�.
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Given t ∈ ℝ, the set Pt ∶= M × {t} is called a horizontal hyperplane of M ×ℝ. Horizontal 
hyperplanes are all isometric to M and totally geodesic in M ×ℝ. In this context, we call a 
transversal intersection Σt := Σ Pt a horizontal section of �. Any horizontal section �t 
is a hypersurface of Pt . So, at any point x ∈ 𝛴t ⊂ 𝛴, the tangent space Tx� of � at x splits 
as the orthogonal sum

We will denote by ℚn
�
 the simply connected space form of constant sectional curvature 

� ∈ {0, 1,−1} ∶ the Euclidean space ℝn ( � = 0 ), the unit sphere �n ( � = 1 ), and the hyper-
bolic space ℍn ( � = −1).

2.2 � The hyperbolic spaces ℍm

𝔽

Mostly, the first factor manifold M of the Riemannian products M ×ℝ considered here is 
either the unit n-sphere �n or one of the Riemannian manifolds known as hyperbolic spaces 
(which include the canonical n-dimensional hyperbolic space ℍn of constant sectional curva-
ture −1 ) .

The hyperbolic spaces are precisely the rank one symmetric spaces of noncompact type, 
which can be described through the four normed division algebras: ℝ (real numbers), ℂ (com-
plex numbers), � (quaternions) and � (octonions). They are denoted by ℍm

ℝ
, ℍm

ℂ
, ℍm

𝕂
 and ℍ2

𝕆
 

and called real hyperbolic space, complex hyperbolic space, quaternionic hyperbolic space 
and Cayley hyperbolic plane, respectively.

We will adopt the unified notation ℍm
𝔽
 for the hyperbolic spaces, where m = 2 for � = �. 

The real dimension of ℍm
𝔽
 is n = m dim � . In particular, ℍ2

𝕆
 has dimension n = 16. We will 

keep the standard notation ℍn for the real hyperbolic space ℍn
ℝ
.

We remark that, being symmetric, the hyperbolic spaces ℍm
𝔽
 are homogeneous. In addition, 

they are included in a distinguished class of Lie groups known as Damek–Ricci spaces (see 
Example 3 in the next section). In this context, it can be shown that any hyperbolic space ℍm

𝔽
 is 

a Hadamard–Einstein manifold with nonconstant (except for ℍn ) sectional curvatures pinched 
between −1 and −1∕4 (cf. [4, Sects. 4.1.9 and 4.2]).

3 � H
r
‑graphs on parallel hypersurfaces

In this section, we give a detailed description of graphs in M ×ℝ which are built on families 
of parallel hypersurfaces of M. As we mentioned before, they will constitute our main tool for 
constructing Hr-hypersurfaces in product spaces M ×ℝ.

With this purpose, consider an isometric immersion

between two Riemannian manifolds Mn−1
0

 and Mn, and suppose that there exists a neighbor-
hood U  of M0 in TM⟂

0
 without focal points of f,  that is, the restriction of the normal expo-

nential map exp⟂
M0

∶ TM⟂

0
→ M to U  is a diffeomorphism onto its image. In this case, 

denoting by � the unit normal field of f,   there is an open interval I ∋ 0 such that, for all 
p ∈ M0, the curve

(4)Hess �(X, Y) = �⟨AX, Y⟩ ∀X, Y ∈ T�.

(5)Tx𝛴 = Tx𝛴t ⊕ Span{∇𝜉}.

f ∶ Mn−1
0

→ Mn
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is a well-defined geodesic of M without conjugate points. Thus, for all s ∈ I,

is an immersion of M0 into M,  which is said to be parallel to f. Observe that, given p ∈ M0 , 
the tangent space fs∗ (TpM0) of fs at p is the parallel transport of f∗(TpM0) along �p from 0 
to s. We also remark that, with the induced metric, the unit normal �s of fs at p is given by

Definition 3  Let 𝜙 ∶ I → 𝜙(I) ⊂ ℝ be an increasing diffeomorphism, i.e., 𝜙′ > 0. With the 
above notation, we call the set

the graph determined by {fs ; s ∈ I} and �, or (fs,�)-graph, for short.

We remark that, for a given (fs,�)-graph � , and for any s ∈ I , fs(M0) is the projection 
on M of the horizontal section 𝛴𝜙(s) ⊂ 𝛴, that is, these sets are the level hypersurfaces 
of �.

For an arbitrary point x = (fs(p),�(s)) of such a graph �, one has

So, a unit normal to � is

In particular, its angle function is

A key property of (fs,�)-graphs is that the trajectories of ∇� on them are lines of curvature, 
that is, ∇� is one of its principal directions. (Notice that, by (9), 0 < 𝛩 < 1, so ∇� never 
vanishes on an (fs,�)-graph.) More precisely (cf. [9, 31]),

We point out that, besides being lines of curvature, the trajectories of ∇� on an (fs,�)-graph 
� , when properly reparametrized, are also geodesics. This follows from the fact that � , and 
consequently ‖∇�‖, is constant along the horizontal sections of � (see [31, Lemma 5]). It 
should also be noticed that these trajectories project on the geodesics �p = �p(s) given by 
(6) (Fig. 1).

Let us compute now the principal curvatures of an (fs,�)-graph �. For that, let {X1 ,… ,Xn} 
be the orthonormal frame of principal directions of � in which Xn = ∇�∕‖∇�‖. In this case, 

(6)�p(s) = exp
M
(f (p), s�(p)), s ∈ I,

fs ∶ M0 → M

p ↦ �p(s)

�s(p) = � �
p
(s).

(7)� ∶= {(fs(p),�(s)) ∈ M ×ℝ ; p ∈ M0, s ∈ I},

Tx𝛴 = fs∗ (TpM0)⊕ Span {𝜕s}, 𝜕s = 𝜂s + 𝜙�(s)𝜕t.

(8)N =
−��

√
1 + (��)2

�s +
1√

1 + (��)2
�t .

(9)� =
1√

1 + (��)2
⋅

(10)A∇� =
���

(
√
1 + (��)2)3

∇�.
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for 1 ≤ i ≤ n − 1, the fields Xi are all horizontal, that is, tangent to M (cf. (5)). Therefore, 
setting

and considering (8), we have, for all i = 1,… , n − 1, that

where ks
i
 is the ith principal curvature of fs . Also, it follows from (10) that kn = ��. Thus, 

the array of principal curvatures of the (fs,�)-graph � is

Now, considering the above identities and writing, for 1 ≤ r ≤ n,

we have that the rth mean curvature of the (fs,�)-graph � is

where Hr
s denotes the rth mean curvature of fs.

Due to equality (13), the function defined in (11)—to be called the �-function of the 
(fs,�)-graph �—will play a major role in the sequel. We remark that, up to a constant, the  
�-function of � determines its �-function. Indeed, it follows from equality (11) that

(11)� ∶=
��

√
1 + (��)2

ki = ⟨AXi,Xi⟩ = −⟨∇Xi
N,Xi⟩ = �⟨∇Xi

�s,Xi⟩ = −�ks
i
,

(12)ki = −�ks
i
(1 ≤ i ≤ n − 1) and kn = ��.

Hr =
∑

i1<⋯<ir≠n

ki1 … kir +
∑

i1<⋯<ir−1

ki1 … kir−1kn ,

(13)Hr = (−1)rHr
s�r + (−1)r−1Hs

r−1
�r−1��,

Fig. 1   Trajectory of ∇� on an (f
s
,�)-graph
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We introduce now a special type of family of parallel hypersurfaces which will be used for 
constructing Hr-hypersurfaces in M ×ℝ.

Definition 4  Following [4], we call a family of parallel hypersurfaces

isoparametric if, for each s ∈ I, any principal curvature ki of fs is constant (possibly 
depending on i and s). If so, each hypersurface fs is also called isoparametric.

We should mention that there is some mismatch regarding the nomenclature for 
isoparametric hypersurfaces. In some contexts, isoparametric hypersurfaces are defined 
as those which, together with its parallel nearby hypersurfaces, have constant mean cur-
vature. It is shown that some manifolds M admit hypersurfaces which are isoparametric 
in this sense and nonisoparametric as we defined.

Let � be an (fs,�)-graph such that the family F = {fs ; s ∈ I} is isoparametric. Then, 
for any r = 1,… , n − 1, the rth mean curvature of fs is a function of s alone, which we 
assume to be no vanishing. In this setting, writing τ ∶= �r , and considering (13) with Hr 
constant, we obtain the following result, which turns out to be our main lemma.

Lemma 1  Let F = {fs ∶ M0 → M ; s ∈ I} be an isoparametric family of hypersurfaces 
whose r(< n)-mean curvatures Hr

s never vanish. Given r ∈ {1,… , n} and Hr ∈ ℝ, let τ be 
a solution of the first-order differential equation

where the coefficients a and b are the functions

Then, if  0 < τ < 1, the (fs,�)-graph � with �-function τ1∕r is an Hr-hypersurface of the 
product M ×ℝ. Conversely, if an (fs,�)-graph � has constant rth mean curvature Hr , then 
τ ∶= �r is a solution of (15).

Regarding Eq. (15), recall that its general solution is

where � is the exponential function

It follows from Lemma 1 that, as long as M admits isoparametric hypersurfaces with non-
vanishing rth mean curvature, for any Hr ∈ ℝ, there exist Hr-graphs in M ×ℝ . (Notice that 

(14)�(s) =
∫

s

s0

�(u)√
1 − �2(u)

du + �(s0), s0 ∈ I.

F ∶= {fs ∶ M0 → M ; s ∈ I}

(15)y� = a(s)y + b(s), s ∈ I,

(16)a(s) ∶=
rHr

s

Hs
r−1

and b(s) ∶=
(−1)r−1rHr

Hs
r−1

⋅

(17)τ(s) =
1

�(s)

(
τ0 +

∫

s

s0

b(u)�(u)du

)
, s0, s ∈ I, τ0 ∈ ℝ,

�(s) = exp

(
−
∫

s

s0

a(u)du

)
, s ∈ I.
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the interval I and the constant τ0 in (17) can be chosen in such a way that the corresponding 
solution τ of (15) satisfies 0 < τ < 1 .) This includes, as a trivial case, the Euclidean space 
ℝ

n. In the next examples, we shall consider other manifolds M to which Lemma 1 applies.

Example 1  (sphere  �n ) It is a well-known fact that isoparametric hypersurfaces in �n are 
abundant and include all its geodesic spheres (see, e.g., [12]).

Example 2  (warped products) Let M = I ×� Fn−1 be a warped product, where the basis 
I ⊂ ℝ is an open interval and the fiber F is an arbitrary (n − 1)-dimensional manifold. For 
each s ∈ I, define fs as the standard immersion F ↪ {s} ×𝜔 F ⊂ M. It is well known that, 
with the induced metric, F = {fs ; s ∈ I} is a family of parallel totally umbilical hyper-
surfaces of M with constant principal curvatures ��∕� (see, e.g., [5]). In particular, F  is 
isoparametric. Hence, if �′ never vanishes, Lemma 1 applies to M.

Example 3  (Damek–Ricci spaces) Let us consider the Riemannian manifolds known as 
Damek–Ricci spaces. These are Lie groups endowed with a left invariant metric with espe-
cial properties (see [4, 12]). For instance, all Damek–Ricci spaces are both Hadamard and 
Einstein manifolds. As we have mentioned, the hyperbolic spaces ℍm

𝔽
 are Damek–Ricci 

spaces. In fact, they are the only ones which are symmetric. Their isoparametric hyper-
surfaces include their geodesic spheres, as well as their horospheres. Also, as shown in 
[10], there exist families of isoparametric hypersurfaces with nonvanishing rth curvatures 
in Damek–Ricci harmonic spaces.

Example 4  (E(�, τ)-spaces) In [13], it was proved that there exist isoparametric families 
of parallel surfaces with nonzero constant principal curvatures in �(k, τ) spaces satisfying 
k − 4τ2 ≠ 0. (Those include the products ℍ2 ×ℝ and 𝕊2 ×ℝ , the Heisenberg space Nil3 , 
the Berger spheres and the universal cover of the special linear group SL2(ℝ).)

In the next two sections, we construct properly embedded Hr-hypersurfaces in products 
M ×ℝ by suitably “gluing” Hr-graphs. To this task, the following result will be consider-
ably helpful.

Lemma 2  Let � ∶ [a1, a2] → ℝ be a differentiable function which satisfies:

and consider the following conditions: 

	 (i)	 �(a2) = 1 and 𝜚�(a2) > 0.

	 (ii)	 �(a1) = 1 and 𝜚�(a1) < 0.

Then, if  (i) occurs, there exists 𝛿 > 0 such that the improper integral

is convergent. Analogously, the improper integral

0 < 𝜚|(a1,a2) < 1,

(18)∫

a2

a2−�

�(s)ds√
1 − �2(s)
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is convergent if (ii) occurs.

Proof  Assume that (i) occurs. In this case, there exist positive constants, � and C,  such that 
𝜚�(s) ≥ C > 0∀s ∈ (a2 − 𝛿, a2). Therefore, since 0 < 𝜚|(a1,a2) < 1,

which proves the convergence of the integral (18). The case (ii) is analogous. 	�  ◻

4 � Rotational H
r
(> 0)‑hypersurfaces of ℍm

𝔽
×ℝ and 𝕊n ×ℝ.

Rotational hypersurfaces in simply connected space forms ℚn
�
 or products ℚn

�
×ℝ are among 

the most classical hypersurfaces of these spaces. In the case of ℚn
�
×ℝ, they are obtained by 

rotating (with the aid of the group of isometries of ℚn
�
 ) a plane curve about an axis {o} ×ℝ, 

o ∈ ℚ
n
�
 . Consequently, any connected component of any horizontal section �t of a rotational 

hypersurface � in ℚn
�
×ℝ lies in a geodesic sphere of ℚn

�
× {t} with center at the axis. This 

fact suggests the following definition.

Definition 5  A hypersurface 𝛴 ⊂ M ×ℝ is called rotational, if there exists a fixed point 
o ∈ M such that any connected component of any horizontal section �t of � is contained in 
a geodesic sphere of M × {t} with center at o × {t}. If so, the set {o} ×ℝ is called the axis 
of �. In particular, any horizontal hyperplane Pt ∶= M × {t} is a rotational hypersurface of 
M ×ℝ with axis at any point o ∈ M.

In what follows, we construct and classify complete rotational Hr(> 0)-hypersurfaces in 
ℍ

m
𝔽
×ℝ and 𝕊n ×ℝ.

4.1 � Rotational H
r
(> 0)‑hypersurfaces of ℍm

𝔽
×ℝ

Let us consider a family

of isoparametric concentric geodesic spheres of ℍm
𝔽
 indexed by their radiuses, that is, for a 

fixed point o ∈ ℍ
m
𝔽
 , and for each s ∈ (0,+∞), fs(�n−1) is the geodesic sphere Ss(o) of ℍm

𝔽
 

with center at o and radius s.
We remark that any sphere fs ∈ F  is strictly convex. Also, in accordance to the notation of 

Sect. 3, for each s ∈ (0,+∞), we choose the outward orientation of fs , so that any principal 
curvature ks

i
 of   fs is negative. In this setting, the function s ∈ (0,+∞) ↦ Hr

s is positive for r 

∫

a1+�

a1

�(s)ds√
1 − �2(s)

�

a2

a2−�

�(s)ds√
1 − �2(s)

≤
�

a2

a2−�

��(s)ds

��(s)
√
1 − �2(s)

≤
1

C �

1

�(a2−�)

d�√
1 − �2

=
1

C

�
�

2
− arcsin(�(a2 − �))

�
≤

�

2C
,

(19)F ∶= {fs ∶ 𝕊
n−1

→ ℍ
m
𝔽
; s ∈ (0,+∞)}
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even and negative for r odd. Hence, for any constant Hr > 0, the coefficients a and b in (16) 
are given by

The principal curvatures ks
i
 of the geodesic spheres fs ∈ F  are ( n = dimℍ

m
𝔽
):

where p = n − 1 for ℍn , p = 1 for ℍm
ℂ
 , p = 3 for ℍm

𝕂
 , and p = 7 for ℍ2

𝕆
 (see, e.g., [6, pgs. 

353, 543] and [20]).
From equalities (21), we obtain the r-mean curvatures Hr

s of the geodesic spheres fs of 
ℍ

m
𝔽
. For instance, in ℍn, n ≥ 2, we have

whereas for ℍm
ℂ
, m > 1, one has

if 1 ≤ r ≤ n − 2 , and

Analogously, one obtains the rth mean curvature functions Hr
s for the other hyperbolic 

spaces. A direct computation from these data yields the following

Lemma 3  The functions a e b defined in (20) have the following properties: 

	 (i)	 a is negative and increasing for 1 ≤ r ≤ n − 1 , and vanishes for r = n.

	 (ii)	 b is positive and increasing for 1 < r ≤ n , and b = H1 for r = 1.

In particular, we have the inequalities

We point out that, in the above setting, one has (cf. [22])

in a neighborhood of s = 0. In particular,

(20)a(s) = −
r|Hr

s|
|Hs

r−1
| and b(s) =

rHr

|Hs
r−1

| ⋅

(21)
ks
1
= −

1

2
coth(s∕2) with multiplicity n − p − 1

ks
2
= − coth(s) with multiplicity p

,

(22)Hr
s = (−1)r

(
n − 1

r

)
cothr(s) (1 ≤ r ≤ n − 1),

(23)
Hr

s =

(
−
1

2

)r
(
n − 2

r

)
cothr(s∕2)

+(−1)r
(
1

2

)r−1
(
n − 2

r − 1

)
cothr−1(s∕2) coth(s)

(24)Hs
n−1

= (−1)n−1 coth(s) cothn−2(s∕2)∕2n−2.

(25)a�(s) ≥ 0, b�(s) ≥ 0, and a�(s) + b�(s) > 0 ∀s ∈ (0,+∞).

(26)|Hr
s| =

(
n − 1

r

)
s−r +O(s2−r)
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In what follows, by means of the family F, we will construct complete rotational Hr-hyper-
surfaces in ℍm

𝔽
×ℝ which are made of pieces of (fs,�)-graphs. To this end, we will look for 

solutions τ(s) of the equation y� = ay + b (with a and b as in (20)) satisfying suitable initial 
conditions. Let us recall that, in this context, the general solution of y� = ay + b is

Concerning the solutions τ(s) , we will be also interested in those which can be extended 
to s = 0. Notice that, in principle, neither a nor b are defined at s = 0 , which makes this 
point a singularity. However, the function b is easily extendable to s = 0. Indeed, we can set 
b(0) = Hr if r = 1 and b(0) = 0 if r > 1 (from (27)). As for a,  it follows from (26) that, for 
1 ≤ r < n,

which characterizes s = 0 as a regular singular point of y� = ay + b. This means that, 
despite the fact that a is not defined at s = 0, this equation has a nonnegative solution τ 
defined at s = 0 that satisfies τ(0) = 0 (cf. [28, Theorem 3.1], [30, Lemma 4.4]). More pre-
cisely, this solution is

where � is a solution of y� + ay = 0. Notice that the function τ defined in (30) is also the 
solution of y� = ay + b in the case r = n, i.e., for a = 0. (Just set �(s) = 1.)

As we shall see, the geometry of the Hr-hypersurfaces we construct from (fs,�)-graphs 
is closely related to the growth of τ as s → +∞. Taking that into account, for a given family 
of parallel geodesic spheres F  in ℍm

𝔽
, we define

In particular, C
�
(n) = 0. Notice that, since ℍm

𝔽
 is homogeneous, the constant C

�
(r) is well 

defined, that is, it does not depend on the family F  of geodesic spheres.
It follows from equalities (22)–(24) that 

	 (i)	 C
ℝ
(r) =

(
n−1

r

)
(1 ≤ r ≤ n − 1).

	 (ii)	 C
ℂ
(r) =

(
1

2

)r(
n−2

r

)
+

(
1

2

)r−1(
n−2

r−1

)
(1 ≤ r ≤ n − 2).

	 (iii)	 C
ℂ
(n − 1) =

1

2n−2
⋅

Similarly, one can compute the other constants C
�
(r) and easily conclude that

(27)lim
s→0

|Hr
s| = +∞.

(28)

τ(s) =
1

�(s)

(
τ0 +

∫

s

s0

b(u)�(u)du

)

�(s) = exp

(
−
∫

s

s0

a(u)du

) , s0 , s ∈ (0,+∞), τ0 ∈ ℝ.

(29)lim
s→0

|a(s)| = +∞ and lim
s→0

s|a(s)| < +∞,

(30)τ(s) ∶=

{
1

�(s)
∫

s

0
b(u)�(u)du if s ∈ (0,+∞)

0 if s = 0,

(31)C
�
(r) ∶= lim

s→+∞
|Hr

s|, r = 1,… , n.

C
�
(r) > 0 ∀r ∈ {1,… , n − 1}.
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The next proposition shows the relation between the solution τ of y� = ay + b and the con-
stant C

�
(r). Notice that, for 1 ≤ r ≤ n − 1, the identities (20) yield:

Proposition 1  The following assertions hold: 

	 (i)	 The solution τ defined in (30) is increasing, i.e., τ� > 0 in (0,+∞).

	 (ii)	 Both the solutions τ in (28) and (30) satisfy the following equality: 

Proof  To prove (i), let us first observe that, since the solution τ in (30) is positive in 
(0,+∞) and τ(0) = 0, we have that τ is increasing near 0. Assume that τ is not increasing 
in (0,+∞). In this case, τ has a first critical point s0 in (0,+∞) which is necessarily a local 
maximum. However, considering (25) and the equality τ� = aτ + b, we have

which implies that s0 is a local minimum—a contradiction. Therefore, τ is increasing in 
(0,+∞), which proves (i).

Suppose that τ is as in (28). Since b is increasing, if r = n one has

which implies that τ(s) → +∞ as s → +∞.

Now, assume 1 ≤ r ≤ n − 1. We claim that, in this case, �(s) → +∞ as s → +∞ . Indeed, 
for any fixed s0 > 0, and s > s0 ,

Since |a| is decreasing, this inequality gives that inf |a| > 0 in (0,+∞). Hence,

which clearly implies the claim on �.

From the expression of τ, we have (apply l’Hôpital to the second summand):

where the last equality comes from (32). This finishes the proof of (33) when τ is defined 
as in (28). The proof for the solution τ in (30) is completely analogous. 	�  ◻

(32)lim
s→+∞

−b(s)

a(s)
=

Hr

C
�
(r)

⋅

(33)lim
s→+∞

τ(s) =

{
+∞ if r = n.

Hr∕C�
(r) if 1 ≤ r ≤ n − 1.

τ��(s0) = a�(s0)τ(s0) + a(s0)τ
�(s0) + b�(s0) = a�(s0)τ(s0) + b�(s0) > 0,

τ(s) = τ0 +
�

s

s0

b(u)du ≥ τ0 + b(s0)(s − s0),

|a(s)| = r|Hr
s|

|Hs
r−1

| >
rC

�
(r)

|Hs0
r−1

| > 0.

𝜇(s) = e
− ∫

s

s0
a(u)du

= e
∫

s

s0
|a(u)|du

> e(inf |a|)(s−s0) ∀s > s0,

lim
s→+∞

τ(s) = lim
s→+∞

τ0

�(s)
+ lim

s→+∞

b(s)�(s)

��(s)
= lim

s→+∞

b(s)�(s)

−a(s)�(s)
=

Hr

C
�
(r)

,
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Now, it is clear from Proposition 1 that a solution τ as in (30) reaches the value 1 if and 
only if Hr > C

�
(r). More specifically, we have the following

Corollary 1  Let τ be as in (30). Then, there exists s0 ∈ (0,+∞) satisfying

if and only if Hr > C
�
(r) (Fig.  2a). Consequently, for 1 ≤ r ≤ n − 1 and any constant 

Hr ∈ (0,C
�
(r)), the following inequality holds (Fig. 2b):

Now, we are in position to establish our first existence result.

Theorem 1  Given r ∈ {1,… , n} and a constant Hr > 0, the following hold: 

	 (i)	 If  Hr > C
�
(r), there exists an embedded strictly convex rotational Hr-sphere in 

ℍ
m
𝔽
×ℝ which is symmetric with respect to a horizontal hyperplane.

	 (ii)	 If  0 < Hr ≤ C
�
(r), there exists an entire strictly convex rotational Hr-graph in 

ℍ
m
𝔽
× [0,+∞) which is tangent to ℍm

𝔽
× {0} at a single point, and whose height func-

tion is unbounded above. Consequently, there are no compact Hr-hypersurfaces 
of  ℍm

𝔽
×ℝ for such values of Hr .

Proof  Let F  be an arbitrary family of parallel geodesic spheres of ℍm
𝔽
 as in (19). Consider 

the functions a and b defined in (20) and let τ be the solution (30) of the ODE y� = ay + b.

If Hr > C
�
(r), we have from Corollary 1 that there exists s0 ∈ (0,+∞) satisfying

Hence, by Lemma 1, the (fs,�)-graph �′ with �-function � ∶= r

√
τ|[0,s0) is a rotational Hr-

graph of ℍm
𝔽
×ℝ over the open ball Bs0

(o) ⊆ ℍ
m
𝔽
 such that

0 < τ|(0,s0) < 1 and τ(s0) = 1

0 < τ(s) < 1 ∀s ∈ (0,+∞).

τ(0) = 0 < τ|(0,s0) < 1 = τ(s0).

(a) (b)

Fig. 2   Graphs of τ (as in (30)) according to the sign of H
r
− C

�
(r)
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From Proposition  1-(i), one has τ�(s0) > 0, which implies that 𝜚�(s0) > 0. Hence, by 
Lemma 2, � extends to s0 , i.e.,

is well defined. In particular, ��� = Ss0 × {�(s0)}.

Notice that o ∈ �� is an isolated minimum of the height function � of �′. Thus, �′ is 
strictly convex at o. In addition, by the identities (12), at any point of �� − {o}, all the prin-
cipal curvatures are positive. Therefore, �′ is strictly convex.

As we know, the angle function � of �′ is given by

Since �(s0) = 1 , we have from (34) that ��(s) → +∞ as s → s0  . This, together with (35), 
implies that the tangent spaces of �′ along ��′ are vertical. Hence, the trajectories of ∇� 
all emanate from o and meet ��′ orthogonally (Fig. 3). Recall that these trajectories are 
geodesics which foliate �′.

Now, set �′′ for the reflection of �′ with respect to ℍm
𝔽
× {�(s0)} and define

that is, � is the “gluing” of �′ and �′′ along the (n − 1)-sphere Ss0 (o) × {�(s0)}. Since the 
tangent spaces along Ss0 (o) × {�(s0)} are all vertical, we have that � is a well-defined rota-
tional strictly convex Hr-hypersurface of  ℍm

𝔽
×ℝ which is homeomorphic to the n-sphere 

�
n and is symmetric with respect to ℍm

𝔽
× {�(s0)}. This proves (i).

Under the hypotheses in (ii), it follows from Corollary 1 that τ satisfies:

(34)�(s) =
∫

s

0

�(u)√
1 − �2(u)

du, s ∈ [0, s0).

�(s0) ∶= lim
s→s0

�(s)

(35)� =
1√

1 + (��)2
⋅

� ∶= closure (��) ∪ closure (���),

Fig. 3   Trajectories of ∇� on �′ emanate from o and meet ��′ orthogonally
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so that the (fs,�)-graph � with �-function � ∶= r
√
τ�[0,+∞) is an entire rotational Hr-graph 

of ℍm
𝔽
×ℝ over ℍm

𝔽
× {0}. Since �(0) = 0 and 𝜙(s) > 0 for any s > 0, � is contained in the 

closed half-space ℍm
𝔽
× [0,+∞) and is tangent to ℍm

𝔽
× {0} at o. Also, the height function 

of � is unbounded above. Indeed, from Proposition 1-(i), τ , and so � , is increasing. Thus, 
for a fixed 𝛿 > 0, and any s > 𝛿, one has

which implies that � is unbounded above. Also, arguing as for the graph �′ in the preced-
ing paragraphs, we conclude that � is strictly convex.

Observe that the mean curvature vector of � “points upwards,” that is, its mean convex 
side Λ is the connected component of (ℍm

𝔽
×ℝ) − � which contains the axis {o} ×ℝ. In 

particular, Λ is foliated by the balls Bs(o) × {�(s)}, s ∈ (0,+∞).

Let us suppose that there exists a compact Hr-hypersurface �̃ such that 0 < Hr ≤ C
�
(r). 

Considering the fact that Λ is “horizontally and vertically unbounded,” it is easily seen 
that, after a suitable vertical translation, we can assume �𝛴 ⊂ Λ (Fig. 4). Now, translate �̃ 
downward until it has a first contact with �. Since � is strictly convex, the tangency prin-
ciple applies (cf. Sect. 2) and gives that � coincides with �̃, which is clearly impossible. 
This shows that such a �̃ cannot exist and finishes the proof of (ii). 	�  ◻

Remark 1  Let 𝛴 ⊂ ℍ
m
𝔽
×ℝ be an entire Hr-graph as in Theorem 1-(ii). Since C

�
(n) = 0 , we 

must have r < n. Also, the associated function τ ∶ [0,+∞) → ℝ is positive, bounded and 
increasing, so that

τ(0) = 0 < τ|(0,+∞) < 1,

�(s) =
�

s

0

�(u)√
1 − �2(u)

du ≥
�

s

�

�(u)du ≥ �(�)(s − �),

Fig. 4   After a downward translation of 𝛴̃, it has a contact with �

Σ̃

Σ

Σ̃

o

H
m
F

•

•

•
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which implies that ��(s) → 0 as s → +∞. This, together with (12), gives that the principal 
curvature kn = ��(s) goes to zero as s → +∞. In particular, the least principal curvature 
function of � is not bounded away from zero.

Next, we apply the method of (fs,�)-graphs to produce one-parameter families of 
Hr(> 0)-annuli in ℍm

𝔽
×ℝ, 1 ≤ r < n. For that, fix s0 = 𝜆 > 0 and consider the solution 

τ(s) of y� = ay + b given in (28), which satisfies the initial condition τ0 = τ(�) = 1. Since 
we must have 0 < τ < 1, we look at those values of � for which τ�(𝜆) < 0. From (20), we 
have

so that τ�(𝜆) < 0 if and only if |Hr
𝜆| > Hr. This (and equality 27) suggest us to define, for 

1 ≤ r < n and a given Hr > 0, the following constant:

In this setting, we have the following result.

Theorem  2  Given r ∈ {1,… , n − 1} and Hr > 0, let 𝛿Hr
> 0 be as in (37). Then, there 

exists a one-parameter family

of properly embedded rotational Hr-hypersurfaces in ℍm
𝔽
×ℝ which are all homeomorphic 

to the n-annulus 𝕊n−1 ×ℝ. In addition, the following assertions hold: 

	 (i)	 If  Hr > C
�
(r), each �(�) ∈ S  is Delaunay type, i.e., it is periodic in the vertical 

direction, and has unduloids as the trajectories of the gradient of its height function.
	 (ii)	 If 0 < Hr ≤ C

�
(r) , each hypersurface �(�) ∈ S  is symmetric with respect to 

ℍ
m
𝔽
× {0} and has unbounded height function.

Proof  Given � ∈ (0, �Hr
), let τ be the solution (28) such that s0 = � and τ(�) = 1. By (36) 

and the definition of �Hr
, one has τ�(𝜆) < 0, so that τ is decreasing near �.

It is clear from (28) that τ is positive in (�,+∞). Thus, if Hr > C
�
(r), it follows from 

(33) that there exists 𝜆̄ ∈ (𝜆,+∞) such that (Fig. 5a)

Let us observe that a critical point s1 of τ is necessarily a strict minimum, since 
τ��(s1) = a�(s1)τ(s1) + b�(s1) > 0. Therefore, τ must have a unique local minimum at a point 
between � and �. In particular, τ�(𝜆̄) > 0.

Setting τ𝜆 ∶= τ|(𝜆,𝜆̄) , it follows from the above considerations and Lemmas 1 and  2 that 
the (fs,�)-graph ��(�) with �-function �(s) = r

√
τ� is a bounded Hr-hypersurface of ℍm

𝔽
×ℝ. 

Moreover, ��(�) is homeomorphic to �n−1 × (𝜆, 𝜆̄) and has boundary (see Fig. 6):

lim
s→+∞

τ�(s) = 0,

(36)τ�(�) = a(�) + b(�) =
r(Hr − |Hr

�|)
|H�

r−1
| ,

(37)𝛿Hr
∶= sup{𝜆 > 0 ; |Hr

𝜆| > Hr}.

S = {�(�) ; � ∈ (0, �Hr
)}

0 < τ|(𝜆,𝜆̄) < 1 = τ(𝜆̄) = τ(𝜆).
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We also have that the tangent spaces of ��(�) are vertical along its boundary ���(�) , for 
𝜚(𝜆) = 𝜚(𝜆̄) = 1. Therefore, we obtain a properly embedded rotational Hr-hypersurface 
�(�) from ��(�) by continuously reflecting it with respect to the horizontal hyperplanes 
ℍ

m
𝔽
× {k𝜙(𝜆̄)}, k ∈ ℤ. This proves (i).

Now, let us assume 0 < Hr ≤ C
�
(r). In this case, (33) gives that (Fig. 5b)

so that the (fs,�)-graph ��(�) determined by � = τ1∕r|(�,+∞) is a rotational Hr-hypersurface 
of ℍm

𝔽
×ℝ with boundary ���(�) = S�(o) × {0} (Fig. 7). By reflecting ��(�) with respect to 

ℍ
m
𝔽
× {0}, as we did before, we obtain the embedded Hr-hypersurface �(�) as stated.

It remains to show that the height function of �(�) is unbounded. For that, we have just 
to observe that the infimum of τ in [�,+∞) is positive, since τ itself is positive in this inter-
val, and its limit as s → +∞ is Hr∕C�

(r) > 0. So, the same is true for � = τ1∕r. Therefore,

𝜕𝛴�(𝜆) = (S𝜆(o) × {0}) ∪ (S𝜆̄(o) × {𝜙(𝜆̄)}).

0 < τ|(𝜆,+∞) < 1,

Fig. 6   “Block” of a Delaunay-type H
r
-hypersurface in ℍm

𝔽
×ℝ

(a) (b)

Fig. 5   Two types of solutions τ , as in (28), satisfying τ(�) = 1
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from which we conclude that � is unbounded. 	�  ◻

Remark 2  The case 𝔽 = ℝ of Theorem 1 was previously established in [15], whereas the 
case 𝔽 = ℝ and r = 1 of Theorem  2 was considered in [2]. Nevertheless, the methods 
employed in these works are different from ours and are not applicable to the products 
ℍ

m
𝔽
×ℝ, 𝔽 ≠ ℝ.

We proceed now to the classification of the complete rotational Hr-hypersurfaces of 
ℍ

m
𝔽
×ℝ whose height functions are Morse type, i.e., have isolated critical points, if any. 

As we shall see, besides cylinders over geodesic spheres, these hypersurfaces are pre-
cisely the ones we obtained in Theorems 1 and 2. In particular, any of them is embed-
ded. We point out that, in [2], it was shown that, for any H1 > 0, there exist complete 
rotational H1-hypersurfaces in ℍn ×ℝ which are not embedded. In accordance with our 
results, the height function of none of these H1-hypersurfaces is Morse type.

Firstly, let us recall that the Hr-hypersurfaces in Theorems 1 and 2 were constructed 
from a single (fs,�)-graph whose associated τ-function is a solution of the ODE 
y� = ay + b, where a and b are as in (20). For such a τ , there is a maximal interval 
(s0, s1) , 0 ≤ s0 < s1 ≤ +∞, such that 0 < τ|(s0,s1) < 1.

Notice that each choice of Hr determines the function b and, so, the equation 
y� = ay + b. The corresponding graph, then, is determined by the ordering of the con-
stants Hr and C

�
(r), as well as by the values of s0 and τ(s0).

Below, we list all the occurrences of s0 and τ(s0) in Theorems 1 and 2 with respect to 
the ordering of Hr and CF(r) : 

	(C1)	 s0 = 0 , τ(s0) = 0 , Hr > C
�
(r).

	(C2)	 s0 = 0 , τ(s0) = 0 , Hr ≤ C
�
(r).

	(C3)	 s0 > 0 , τ(s0) = 1 , Hr > C
�
(r).

𝜙(s) =
∫

s

𝜆

𝜚(u)√
1 − 𝜚2(u)

du >
∫

s

𝜆

𝜚(u)du > inf 𝜚�[𝜆,+∞)(s − 𝜆),

Fig. 7   (f
s
,�)-graph ��(�), on which all the trajectories of ∇� emanate from ���(�) orthogonally
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	(C4)	 s0 > 0 , τ(s0) = 1 , Hr ≤ C
�
(r).

The cases C1 and C2 correspond to Theorem  1-(i) and Theorem  1-(ii), respectively, 
whereas C3 and C4 correspond to Theorem 2-(i) and Theorem 2-(ii). We also remark 
that s1 < +∞ in the cases C1 and C3, with τ(s1) = 1, and that s1 = +∞ in the cases C2 
and C4.

Let M0 be a hypersurface of a Riemannian manifold M. It is easily seen that 
� ∶= M0 ×ℝ is a hypersurface of M ×ℝ whose tangent spaces are all vertical, so that 
�t is a principal direction of � with vanishing principal curvature. In particular, Hn = 0 
on �. Also, for all r ∈ {1,… , n − 1}, the rth mean curvatures of M0 and � at x ∈ M0 and 
(x, t) ∈ � coincide. In particular, M0 is an Hr(<n)-hypersurface of M if and only if � is an 
Hr(<n)-hypersurface of M ×ℝ. We call � ∶= M0 ×ℝ the cylinder over M0.

Theorem  3  Let � be a connected complete rotational Hr(> 0)-hypersurface of ℍm
𝔽
×ℝ 

whose height function is Morse type. Then, � is either a cylinder over a geodesic sphere 
of  ℍm

𝔽
 or one of the embedded Hr-hypersurfaces of Theorems 1–2.

Proof  Suppose that � is not a cylinder. In this case, we have that the open set 𝛴0 ⊂ 𝛴 on 
which �∇� never vanishes is nonempty. Since �0 contains no vertical points, for a given 
x0 ∈ �0 , there is an open neighborhood �′ of x0 in �0 which is a graph over an open set 
Ω of ℍm

𝔽
 . Thus, since � is rotational and �0 contains no horizontal points, after possibly a 

reflection with respect to a horizontal hyperplane, we can assume that �′ is an (fs,�)-graph 
over Ω. (Recall that, in our setting, the �-function of an (fs,�)-graph is required to be radi-
ally increasing.)

By Lemma 1, the function τ = �r associated with �′ is a solution of y� = ay + b, with 
a and b as in (20). In addition, since � is complete, there exists a maximal interval (s0, s1) , 
0 ≤ s0 < s1 ≤ +∞, such that 0 < τ|(s0,s1) < 1. In particular, we have the following two 
possibilities:

Suppose that τ(s0) = 0. After a vertical translation, we can assume that

which yields �(s0) = ��(s0) = 0. If s0 > 0, these equalities imply that the sphere 
Ss0 (o) × {0} of ℍm

𝔽
 is contained in ��′, and that ∇� vanishes at all of its points. This, how-

ever, contradicts that the height function of � is Morse type. Hence, s0 = 0, so that the τ
-function of �′ satisfies the initial condition τ(0) = 0.

If Hr > C
�
(r), by the uniqueness of solutions of linear ODE’s satisfying an initial condi-

tion, the function τ such that τ(0) = 0 coincides with the one in the case C1 above. Thus, 
the corresponding �-functions also coincide, which clearly implies that �′ is an open set of 
the (strictly convex) Hr-sphere obtained in Theorem 1-(i). Therefore, by the tangency prin-
ciple, � coincides with this Hr-sphere. If Hr ≤ C

�
(r), then τ coincides with the solution of 

case C2. Analogously, we conclude that � is an entire graph as in Theorem 1-(ii).

τ(s0) = 0 or τ(s0) = 1.

�(s) =
∫

s

s0

�(u)√
1 − �2(u)

du,
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Let us suppose now that τ(s0) = 1. Since 0 < τ < 1 in (s0, s1), τ is decreasing near s0  , 
which implies that r < n. (Indeed, for r = n, we have τ� = b > 0. ) In this case, as we have 
discussed, |a(s)| → +∞ as s → 0 (cf. (29)), and b(0) is 0 or H1 . In particular, any solution τ 
of y� = ay + b at s = 0 must satisfy τ(0) = 0, so that s0 ≠ 0. Hence, s0 ∈ (0, �Hr

), where �Hr
 

is the positive constant defined in (37). Otherwise, τ would not be decreasing near s0.

Setting s0 = � and observing that any of the hypersurfaces obtained in Theorem  2 is 
strictly convex at some of its points, we can argue as in the second from the last paragraph 
and conclude that � is the Hr-hypersurface �(�) of either Theorem  2-(i) or Theorem 2-(ii), 
according to whether Hr > C

�
(r) or Hr ≤ C

�
(r). This finishes the proof. 	�  ◻

4.2 � Rotational H
r
(> 0)‑hypersurfaces of 𝕊n ×ℝ

In this section, we apply the method of (fs,�)-graphs to construct and classify rotational 
Hr(> 0)-hypersurfaces in 𝕊n ×ℝ.

As we did before, let us fix a point o ∈ �
n and consider a family

of parallel geodesic spheres fs of �n with radius s and center at o. As is well known, each fs 
is totally umbilical, having principal curvatures all equal to − cot s with respect to the out-
ward orientation. In particular, F  is isoparametric.

From a direct computation, we get that the coefficients a and b of the ODE y� = ay + b 
determined by F  and any given Hr > 0 are

and that the corresponding general solution is:

where τ0 = τ(s0) ∈ ℝ and

Also, it is easily checked that

is a well-defined solution of y� = ay + b satisfying y(0) = 0.

Given an integer n ≥ 2, it will be convenient to introduce the following constant:

(38)F ∶= {fs ∶ �
n−1

→ �
n ; s ∈ (0,�)}

(39)a(s) = −(n − r) cot s and b(s) = br tan
r−1(s) , br = rHr

(
n − 1

r − 1

)−1

,

(40)τ(s) ∶=

(
sin s0

sin s

)n−r(
τ0 +

br

sinn−r(s0) ∫

s

s0

sinn−1(u)

cosr−1(u)
du

)
, s0 , s ∈ (0,R),

R ∶=

{
𝜋∕2 if r > 1.

𝜋 if r = 1.

(41)τ(s) ∶=

{
br

sinn−r(s)
∫

s

0

sinn−1(u)

cosr−1(u)
du if s ∈ (0,R)

0 if s = 0

(42)S(n) =
�

�∕2

0

sinn−1(s)ds, n ≥ 2.
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Proposition 2  Let τ be the solution (41). Then, the following hold: 

	 (i)	 τ� > 0 in (0,R).

	 (ii)	 lim
s→R

τ(s) = +∞.

	 (iii)	 lim
s→

�

2

τ(s) = H1S(n) if r = 1.

Proof  Since the functions a and b in (39) are both increasing (when nonconstant), the proof 
of (i) is entirely analogous to the one given in Proposition 1-(i).

To prove (ii), let us first assume r = 1. In this case, since sin� = 0 and the integral 
∫

�

0
sinn−1(u)du is positive, we have that τ satisfies (ii) for R = �.

If r > 1 , for a fixed � ∈ (0,�∕2) and any s ∈ (�,�∕2), one has

which implies that the first integral on the left goes to infinity as s → �∕2, since the same is 
true for the integral ∫ s

�
tanr−1(u)du . It follows from this fact that τ(s) → +∞ as s → �∕2 if 

r > 1, which proves (ii).

The identity in (iii) follows directly from the definitions of τ (for r = 1 ) and S(n) (as in 
(42)). 	�  ◻

From the above proposition, we get the following existence result for Hr(> 0)-hyper-
surfaces of 𝕊n ×ℝ.

Theorem 4  Given r ∈ {1,… , n} and a constant Hr > 0, there exists a rotational Hr-sphere 
� in 𝕊n ×ℝ which is symmetric with respect to a horizontal hyperplane. Furthermore: 

	 (i)	 � is strictly convex if either r = 1 and H1 > 1∕S(n) or r > 1.

	 (ii)	 � is convex if r = 1 and H1 = 1∕S(n).

	 (iii)	 � is nonconvex if r = 1 and 0 < H1 < 1∕S(n).

Proof  Let F  be an arbitrary family of parallel geodesic spheres of �n as given in (38). 
Consider the functions a and b defined in (39) and let τ be the solution (41) of the ODE 
y� = ay + b.

From Proposition 2-(ii), there exists a positive s0 < R such that

so that τ|[0,s0) determines an (fs,�)-graph �′ over Bs0
(0) ⊂ �

n. Since τ(s0) = 1 and 
τ�(s0) > 0 (by Proposition 2-(i)), we can proceed just as in the proof of Theorem 1-(i) to 
obtain from �′ the embedded Hr-sphere � of 𝕊n ×ℝ which is symmetric with respect to 
P�(s0)

∶= �
n × {�(s0)}.

�

s

0

sinn−1(u)

cosr−1(u)
du ≥

�

s

�

tanr−1(u)sinn−r(u)du ≥ sinn−r(�)
�

s

�

tanr−1(u)du,

0 = τ(0) < τ|(0,s0) < 1 = τ(s0),
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If either r = 1 and H1 > 1∕S(n) or r > 1, we have from Proposition 2, items (ii) and (iii), 
that 0 < s0 < 𝜋∕2. Hence, for s ∈ (0, s0), all spheres fs have negative principal curvatures, 
which, together with equalities (12), gives that � is strictly convex. This proves (i).

If r = 1 and H1 = 1∕S(n), Proposition 2-(iii) yields s0 = �∕2. However, f�∕2 is totally 
geodesic in �n, which implies that, except for kn = H1 > 0, the principal curvatures of � 
vanish at all points of the horizontal section ��(�∕2) = � ∩ P�(�∕2). Therefore, � is convex 
on ��(�∕2) and strictly convex on � − ��(�∕2) .

Finally, assuming r = 1 and 0 < H1 < 1∕S(n), we have from Proposition  2-(iii) that 
s0 > 𝜋∕2. Observing that, for 𝜋∕2 < s < 𝜋, fs has positive principal curvatures, we con-
clude, as in the last paragraph, that � is strictly convex (resp. convex, nonconvex) on ��(s) 
if s < 𝜋∕2 (resp. s = �∕2, s > 𝜋∕2 ). In particular, � is nonconvex. This shows (iii) and 
concludes our proof. 	�  ◻

Remark 3  Except for the assumptions on the convexity of �, the case r = 1 of Theorem 4 
was proved in [25]. The case r = n = 2 was considered in [7]. It should also be mentioned 
that, for n = 2 and r = 1, the nonconvexity of � as stated in (iii) was pointed out in [1, 
Remark 2.8].

In our next theorem, we show the existence of one-parameter families of rotational 
Delaunay-type Hr(> 0)-annuli in 𝕊n ×ℝ. This result, then, generalizes the analogous 
one obtained in [26] for r = 1.

First, let us introduce the constant

and observe that, for 1 ≤ r < n, Hr , br (as in (39)), and Cr satisfy:

In this setting, if we define

then a solution τ of y� = ay + b such that τ(s0) = 1 , s0 ∈ (0,�∕2), satisfies:

Theorem 5  Given n ≥ 2, r ∈ {1,… , n − 1} , and Hr > 0, there exists a one-parameter fam-
ily  S = {𝛴(𝜆) ; 0 < 𝜆 < 𝛿Hr

} of properly embedded Delaunay-type rotational Hr-hyper-
surfaces in 𝕊n ×ℝ.

Proof  Given � ∈ (0, �Hr
), consider the solution τ as in (40) such that s0 = � and 

τ0 = τ(�) = 1. From (45), we have that τ is decreasing in a neighborhood of �.

Cr ∶=
n − r

n

(
n

r

)

(43)
n − r

br
=

Cr

Hr

⋅

(44)�Hr
∶= arctan (Cr∕Hr)

1∕r ∈ (0,�∕2),

(45)τ�(s0) < 0 ⇔ 0 < s0 < 𝛿Hr
.
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Observe that τ is positive in (0,R). Also, setting

we have that 𝜇 > 1 on (�,�∕2). So, for r > 1 and s > 𝜆,

which implies that τ(s) → +∞ as s → �∕2.

If r = 1, since sin� = 0 and ∫ �

�
�(s)ds is positive, we have that τ(s) → +∞ as s → �.

It follows from the above considerations that there exists � ∈ (0,R) such that

From this point on, the proof is entirely analogous to that of Theorem 2-(i). 	�  ◻

A classification result for rotational Hr-hypersurfaces of 𝕊n ×ℝ can be achieved as it 
was for their congeners in ℍm

𝔽
×ℝ. To see this, assume that � is a complete connected 

rotational Hr(> 0)-hypersurface of 𝕊n ×ℝ whose height function is Morse type. Assum-
ing that � is noncylindrical, we have, as before, that there exists an open set 𝛴′ ⊂ 𝛴 
which is an (fs,�)-graph, fs ∈ F. The corresponding τ-function, restricted to a maximal 
interval (s0, s1), satisfies:

which yields τ(s0) = 0 or τ(s0) = 1.

If τ(s0) = 0, then s0 = 0. (Otherwise, the height function of � would not be Morse type.) 
In this case, τ coincides with the τ-function of the Hr-sphere of Theorem 4, and then, � 
itself coincides with this sphere. (Notice that any of the spheres obtained in Theorem 4 is 
strictly convex on an open set.)

If τ(s0) = 1, then τ is decreasing in a neighborhood of s0  . Thus, r < n. In particular, 
|a(s)| → +∞ as s → 0, so that s0 ∈ (0, �Hr

). Analogously, this gives that � coincides with 
the Hr-annulus �(�) of Theorem 5, � = s0.

Summarizing, we have the following result.

Theorem  6  Let � be a connected complete rotational Hr(> 0)-hypersurface of 𝕊n ×ℝ 
whose height function is Morse type. Then, � is either a cylinder over a strictly convex 
geodesic sphere of  �n or one of the embedded Hr-hypersurfaces of Theorems 4–5.

Remark 4  Regarding the hypothesis on the height function of � in Theorem 6, we point out 
that a rotational embedded H1(> 0)-torus in 𝕊n ×ℝ whose height function is non-Morse 
type was obtained in [25].

�(s) =
(
sin s

sin �

)n−r

,

τ(s) >
1

𝜇(s)

(
1 +

∫

s

𝜆

b(u)du

)
=

1

𝜇(s)

(
1 + br

∫

s

𝜆

tanr−1(u)du

)
,

(46)τ(𝜆) = τ(𝜆̄) = 1 and τ�(𝜆) < 0 < τ�(𝜆̄).

0 < τ|(s0 ,s1) < 1, 0 ≤ s0 < s1 ≤ R,
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5 � Rotational r‑minimal hypersurfaces of ℍm

𝔽
×ℝ and 𝕊n ×ℝ.

In this section, we shall see that the method of (fs,�)-graphs can be used for constructing 
and classifying rotational r-minimal hypersurfaces of  ℍm

𝔽
×ℝ and 𝕊n ×ℝ. A major dis-

tinction from the case of Hr(> 0)-hypersurfaces is that the tangency principle is no longer 
available.

Theorem 7  Given r ∈ {1,… , n}, there exists a one-parameter family

of complete rotational r-minimal n-annuli in  ℍm
𝔽
×ℝ with the following properties: 

	 (i)	 If r = n, �(�) is a cylinder over a geodesic sphere of  ℍm
𝔽
 of radius 𝜆 > 0.

	 (ii)	 If r < n , �(�) is catenoid type. More precisely, it is symmetric with respect to 
P0 = ℍ

m
𝔽
× {0}, and P0 ∩ �(�) is the geodesic sphere of  ℍm

𝔽
 of radius � centered at 

the point o ∈ ℍ
m
𝔽
 of the axis. In addition, each of the parts of �(�) above and below 

P0 is a rotational graph over ℍm
𝔽
− B�(o) (Fig. 8).

Furthermore, up to ambient isometries, any complete connected rotational r-minimal 
hypersurface of  ℍm

𝔽
×ℝ is either an element of S  or a horizontal hyperplane.

Proof  Given 𝜆 > 0, is immediate that a cylinder over a geodesic sphere of ℍm
𝔽
 of radius � is 

an n-minimal rotational annulus of ℍm
𝔽
×ℝ, which yields (i).

Assume that 1 ≤ r < n and let F = {fs ; s ∈ (0,+∞)} be the parallel family of geodesic 
spheres of ℍm

𝔽
 centered at the axis point o ∈ ℍ

m
𝔽
. The ODE determined by F  and Hr = 0 is

Since a < 0, given 𝜆 > 0, the function

S = {𝛴(𝜆) ; 𝜆 > 0}

(47)y� = ay, a(s) = −
r|Hr

s|
|Hr

s−1| , s ∈ (0,+∞).

Fig. 8   Half r-minimal catenoid ��(�), on which all the trajectories of ∇� emanate from ���(�) orthogonally
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is clearly a solution of (47) which satisfies

In addition, τ�
𝜆
(𝜆) = a(𝜆) < 0. So, setting �� = τ

1∕r

�
, it follows from Lemma 2 that

is well defined. Therefore, by Lemma 1, the (fs,��)-graph ��(�) is an r-minimal hypersur-
face of ℍm

𝔽
×ℝ. Notice that ��(�) is a graph over ℍm

𝔽
− B�(o) with boundary ���(�) = S�(o) 

(Fig. 8).

Also, since ��(�) = 1, the tangent spaces of ��(�) along ���(�) are all vertical. Thus, 
considering the reflection ���(�) of ��(�) with respect to ℍm

𝔽
× {0}, as before, we have that 

�(�) ∶= closure (��(�)) ∪ closure (���(�)) is the desired r-minimal hypersurface.

Suppose now that � is a complete connected rotational r-minimal hypersurface of 
ℍ

m
𝔽
×ℝ , r ∈ {1,… , n}, and set

Notice that � is either a horizontal hyperplane or a cylinder if and only if �0 = �. So, we 
can assume �0 ≠ ∅. We can also assume, without loss of generality, that � and all elements 
of S  share the same axis {o} ×ℝ.

As we argued in previous proofs, under the above hypotheses, there exists an (fs,�)
-graph 𝛴′ ⊂ 𝛴0 and a maximal open interval (s0, s1), 0 ≤ s0 < s1 ≤ +∞, such that the τ
-function of �′ satisfies 0 < τ|(s0,s1) < 1.

For r = n, we have that τ, and so � , is constant. Hence, up to a vertical translation, one 
has 𝜙(s) = cs, s > 0, for some constant c > 0. However, 𝜙�(0) = c > 0, which implies that 
the closure of �′ in � meets the rotation axis nonorthogonally, i.e., � is not smooth at 
��′ —a contradiction. So, �0 = � if r = n.

For r < n, we have that τ is a solution of (47). In particular, τ is decreasing, which 
implies that τ(s0) = 1. As before, this yields s0 > 0. Thus, setting s0 = �, we have τ = τ� , 
which implies that, up to a vertical translation, � = �� and, then, �′ coincides with the 
half-catenoid ��(�).

We conclude from the above that �0 is the union of open half-catenoids ��(�) , where 
�(�) ∈ S. In particular, the boundary ��0 of �0 in � has no horizontal points.

Now we prove that �1 ∶= � − �0 has empty interior in �. Indeed, assuming other-
wise, consider a nonempty maximum open set U ⊂ 𝛴1 of � whose boundary intersects 
��0. Then, U is either horizontal or vertical. Since ��0 has no horizontal points, U should 

τ�(s) = exp

(
∫

s

�

a(u)du

)
, s ∈ [�,+∞),

0 < τ𝜆(s) ≤ τ𝜆(𝜆) = 1 ∀s ∈ [𝜆,+∞).

��(s) ∶=
∫

s

�

��(u)√
1 − �2

�
(u)

du, s ∈ [�,+∞),

�0 ∶= {x ∈ � ;�(x)∇�(x) ≠ 0}.
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be vertical and, so, part of a vertical rotational cylinder. However, rotational cylinders in 
ℍ

m
𝔽
×ℝ are r-minimal if and only if r = n.

It follows from the above that �0 is open and dense in �. Clearly, the intersection of two 
distinct elements of S  is always transversal. This, together with the connectedness of � 
and the density of �0  in �, gives that � coincides with some �(�) ∈ S  . This finishes the 
proof. 	�  ◻

Theorem 8  Given r ∈ {1,… , n}, there exist R0 > 0 and a one-parameter family

of complete rotational r-minimal n-annuli in  𝕊n ×ℝ with the following properties: 

	 (i)	 If r = n, then R0 = � and �(�) is a cylinder over a geodesic sphere of  �n of radius 
�.

	 (ii)	 If r < n , then R0 = �∕2 and �(�) is Delaunay type.

Furthermore, up to ambient isometries, any complete connected rotational r-minimal 
hypersurface of  𝕊n ×ℝ is either an element of S  or a horizontal hyperplane.

Proof  Statement (i) is trivial. So, assume r < n and let F = {fs ; s ∈ (0,�)} be the family 
of parallel geodesic spheres of �n centered at some point o ∈ �

n. In this setting, the ODE 
determined by F  and Hr = 0 is

Given � ∈ (0,�∕2), the function

is easily seen to be the solution of (48) satisfying

Henceforth, the reasoning in the proof of Theorem 5 applies and leads to the construction 
of the Delaunay-type r-minimal hypersurface �(�) as stated in (ii).

Now, suppose that � is a complete connected rotational r-minimal hypersurface of 
𝕊
n ×ℝ. Under this assumption, define

As in the preceding proof, �0 = � if r = n. Thus, in this case, � is either a horizontal 
hyperplane or a cylinder over a geodesic sphere of �n.

Suppose that r < n and that the axis of � is {o} ×ℝ. If �0 ≠ ∅, then � is neither a 
horizontal hyperplane nor a cylinder. In addition, there exists an (fs,�)-graph 𝛴′ ⊂ 𝛴0 
and a maximal interval (s0, s1), 0 ≤ s0 < s1 ≤ 𝜋 , such that the τ-function of �′ satisfies 
0 < τ|(s0,s1) < 1 . So, τ(s0) = 0 or τ(s0) = 1.

S = {𝛴(𝜆) ; 0 < 𝜆 < R0}

(48)y� = ay, a(s) = −(n − r) cot s, s ∈ (0,�).

τ�(s) =
(
sin �

sin s

)n−r

, s ∈ (0,�),

0 < τ𝜆|(𝜆,𝜋−𝜆) < 1 = τ(𝜆) = τ(𝜋 − 𝜆).

�0 ∶= {x ∈ � ;�(x)∇�(x) ≠ 0}.
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The formula of the general solution of the ODE (48) gives that τ is positive, not defined 
at s = 0,� , and bounded away from zero. In particular, s0 ≠ 0, s1 ≠ � and τ(s0) = τ(s1) = 1, 
so that τ is given by

It is clear from this last equality and the considerations preceding it that s0 < 𝜋∕2 < s1 < 𝜋, 
which implies that τ coincides with τ� , � = s0 . Therefore, �′ coincides with the “block” 
��(�) that generates �(�), so that �0 is a union of open sets of elements of S. In particular, 
the boundary ��0 of �0 in � has no horizontal points, and any of its vertical points lies on 
a geodesic sphere of a hyperplane of ℍm

𝔽
×ℝ of radius different from �∕2 (see Fig. 6).

It follows from the considerations in the last paragraph that �1 ∶= � − �0 has empty 
interior in �. Indeed, assume by contradiction that U ⊂ 𝛴1 is a nonempty maximal open 
set of � intersecting ��0. Then, U must be vertical, since ��0 has no horizontal points. 
This gives that U is part of the totally geodesic cylinder S�∕2 ×ℝ. In this case, a boundary 
point of U in ��0 is vertical and lies on a geodesic sphere of radius �∕2 in a hyperplane of 
ℍ

m
𝔽
×ℝ, which is impossible, as we have shown.

We conclude from the above that �0 is open and dense in �. Since � is connected and 
two distinct elements of S  are never tangent, it follows that, for some � ∈ (0,�∕2), � coin-
cides with �(�) ∈ S. 	�  ◻

Remark 5  The case 𝔽 = ℝ of Theorem 7 was considered in [16], whereas Theorem 8 was 
proved in [26] for r = 1. Again, the methods employed in these works is different from ours 
and cannot be applied to general products M ×ℝ , since they all rely on the Euclidean and 
Lorentzian geometries of the underlying spaces of 𝕊n ×ℝ and ℍn ×ℝ.

6 � Translational H
r
(> 0)‑hypersurfaces of ℍm

𝔽
×ℝ.

Given a Hadamard manifold M,  recall that the Busemann function �� of M correspond-
ing to an arclength geodesic � ∶ (−∞,+∞) → M is defined as

The level sets Hs ∶= �−1
�
(s) of a Busemann function �� are called horospheres of M. In this 

setting, as is well known, {Hs ; s ∈ (−∞,+∞)} is a family of parallel hypersurfaces which 
foliates M. Furthermore, any horosphere Hs is homeomorphic to ℝn−1 , and any geodesic 
of M which is asymptotic to �—i.e., with the same point p∞ on the asymptotic boundary 
M(∞) of M—is orthogonal to each horosphere Hs  . In this case, we say that the horo-
spheres Hs are centered at p∞ .

Therefore, in what concerns its horospheres, a Hadamard manifold can be pictured 
just as the Poincaré ball model of hyperbolic space ℍn, where the horospheres centered 
at a point p∞ ∈ ℍ

n(∞) are the Euclidean (n − 1)-spheres in ℍn which are tangent to 
ℍ

n(∞) at p∞ (Fig. 9).
In the real hyperbolic space ℍn, any horosphere is totally umbilical with constant 

principal curvatures equal to 1. As shown in [4, Proposition-(vi), pg. 88], any horosphere 

τ(s) =

(
sin s0

sin s

)n−r

, s0 , s ∈ (0,�).

�� (p) ∶= lim
s→+∞

(distM(p, �(s)) − s), p ∈ M.
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of ℍm
𝔽
, 𝔽 ≠ ℝ, has principal curvatures 1 and 1/2 with multiplicities 1 and n − 2, respec-

tively. Therefore, any family F  of parallel horospheres of  ℍm
𝔽

 is isoparametric and its 
elements are pairwise congruent. In addition, for any integer r ∈ {1,… , n − 1}, all 
horospheres of   ℍm

𝔽
 have the same (positive) r-th mean curvature, which we denote by 

Hr
0.

Theorem  9  Let F ∶= {Hs ; s ∈ (−∞,+∞)} be a family of parallel horospheres in 
hyperbolic space ℍm

𝔽
. Then, for any even integer   r ∈ {2,… , n − 1}, and any constant 

Hr ∈ (0,Hr
0), there exists two properly embedded, everywhere nonconvex Hr-hypersur-

faces �1 and �2 in ℍm
𝔽
×ℝ, which are both homeomorphic to  ℝn. In addition, the following 

hold: 

	 (i)	 �1 is a convex and nowhere strictly convex entire graph over ℍm
𝔽
 with constant angle 

function and unbounded height function.
	 (ii)	 �2 is foliated by horospheres, is symmetric with respect to the horizontal hyperplane 

ℍ
m
𝔽
× {0}, and has unbounded height function.

Furthermore, as Hr → Hr
0, both �1 and �2 converge to a Hr

0-cylinder over a horosphere of 
the family F.

Proof  For each s ∈ (−∞,∞) , consider the isometric immersion fs ∶ ℝ
n−1

→ ℍ
m
𝔽
 such that 

fs(ℝ
n−1) = Hs  . Since all the principal curvatures of fs are constant and independent of 

s,  the coefficients a e b of the ODE y� = ay + b associated with this family are constants. 
Also, since r is even and 0 < Hr < Hr

0 , we have

Fig. 9   A “ball model” for a Hadamard manifold
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Therefore, the constant function

is a trivial solution of y� = ay + b satisfying 0 < τ < 1. This, together with Lemma  1 
and equalities (9) and (14), gives that the (fs,�)-graph �1 determined by � = τ1∕r is 
entire, unbounded and constitutes an Hr-hypersurface of ℍm

𝔽
×ℝ with constant angle 

function. Also, from identities (12), all principal curvatures of �1 are nonpositive, with 
kn = �� = 0, so that �1 is convex and nowhere strictly convex. Finally, it follows from (49) 
that τ = −b∕a → 1 as Hr → Hr

0, which implies that the angle function of �1 goes to 0 as 
Hr → Hr

0. Consequently, �1 converges to a cylinder over a horosphere of F  as Hr → Hr
0.

Now, let us consider the following solution τ ∶ (−∞, 0] → ℝ of y� = ay + b:

It is easily seen that

So, by Lemma 1, the (fs,�)-graph �′ with � = r
√
τ is an Hr-hypersurface of ℍm

𝔽
×ℝ. The 

function �, in this case, is given by

Notice that, by (51), one has

so that τ�(0) > 0. Thus, by Lemma 2, � is well defined. Also, � is negative on (−∞, 0) and 
is unbounded. Indeed, for all s ∈ (−∞, 0),

which implies that � is unbounded, since 𝜚(s) → (−b∕a)1∕r > 0 as s → −∞.

Denoting by B0 the horoball of ℍm
𝔽
 with boundary H0 , it follows from the above con-

siderations that �′ is an Hr-graph over ℍm
𝔽
− B0 which is unbounded and has boundary 

��� = H0 × {0} (Fig. 10). In particular, �′ is homeomorphic to ℝn and, from the identities 
(12), �′ is everywhere nonconvex.

(49)b < 0 < a and 0 < −
b

a
=

Hr

Hr
0
< 1.

τ(s) = −
b

a
, s ∈ (−∞,+∞),

(50)τ(s) = ea(s−s0) −
b

a
, s0 = log(1 + b∕a)−1∕a.

(51)0 < −
b

a
< τ(s) ≤ 1 = τ(0) ∀s ∈ (−∞, 0].

�(s) ∶= −
∫

0

s

�(u)√
1 − �2(u)

du, s ∈ (−∞, 0).

τ�(s) = aτ(s) + b > a
−b

a
+ b = 0,

−�(s) =
�

0

s

�(u)√
1 − �2(u)

du ≥
�

0

s

�(u)du ≥ − inf ��[s,0]s = −s�(s) ,
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Fig. 10   A piece of the graph �′ , on which all the trajectories of ∇� meet H0 × {0} orthogonally

Since �(0) = 1, as in the previous theorems, we have that any trajectory of ∇� on �′ 
meets ��′ orthogonally. Consequently, setting �′′ for the reflection of �′ with respect to 
ℍ

m
𝔽
× {0} and defining

we have that � is a properly embedded Hr-hypersurface of ℍm
𝔽
×ℝ which is foliated by 

horospheres and is homeomorphic to ℝn (Fig. 11).

To finish the proof, let us just observe that, from (49) and (50), one has

Therefore, just as the graph �1, �2 converges to a cylinder over a horosphere of F  as 
Hr → Hr

0. 	�  ◻

Our next result establishes that the conditions on the parity of r and on the sign of 
Hr − Hr

0 in Theorem 9 are, in fact, necessary.

Theorem  10  Let F  be a family of parallel horospheres in ℍm
𝔽
. Assume that, for some 

r ∈ {1,… , n}, � is a complete connected Hr(> 0)-hypersurface of  ℍm
𝔽
×ℝ with no hori-

zontal points and that each connected component of any horizontal section 𝛴t ⊂ 𝛴 is a 
(vertically translated) horosphere of F. Under these conditions, one has r < n. Assume, in 
addition, that either of the following assertions holds: 

	 (i)	 r is even and Hr ≥ Hr
0.

	 (ii)	 r is odd.

�2 ∶= closure (��) ∪ closure (���),

lim
Hr→Hr

0
τ(s) = 1 ∀s ∈ (−∞, 0].



	 R. F. d. Lima et al.

1 3

Then, � = Hs ×ℝ for some Hs ∈ F. In particular, Hr = Hr
0.

Proof  Let 𝛴0 ⊂ 𝛴 be the open set of points x ∈ � satisfying �(x) ≠ 0. Our aim is to prove 
that �0 is empty. Assuming otherwise, choose x0 ∈ �0 . Since � has no horizontal points, 
we can suppose (after possibly a reflection about a horizontal hyperplane) that there is an 
open neighborhood 𝛴′ ⊂ 𝛴0 of x0 which is an (fs,�)-graph, fs ∈ F.

The τ-function associated with �′ satisfies τ� = aτ + b, where a and b ≠ 0 are the 
(constant) functions (16) determined by F  and Hr  . Also, there is a maximal interval 
I = (s1, s2) ⊂ ℝ, −∞ ≤ s1 < s2 ≤ +∞ , such that τ(I) ⊂ (0, 1).

Let us suppose that r = n. In this case, we have a = 0, which gives τ�(s) = b ≠ 0, 
that is, τ(s) = bs + c, c ∈ ℝ. In particular, s1 > −∞ and s2 < +∞ , and τ is increasing 
(if b > 0 ), or decreasing (if b < 0 ) in (s1, s2). So, τ vanishes at s1 or at s2  . Assuming the 
former, we have that � is defined at s1 and ��(s1) = 0. Thus, for any p ∈ ℝ

n−1, the point 
x = (fs1 (p),�(s1)) ∈ �� is horizontal, contrary to our assumption. Therefore, if r = n, then 
�0 = �, which implies that � = Hs ×ℝ for some s ∈ ℝ. But this contradicts the assumed 
positiveness of Hn . Hence, we must have r < n.

Let us assume now that (i) holds. Then, we have b < 0 < a. Also, on (s1, s2),

Fig. 11   A piece of a properly embedded everywhere nonconvex H
r
(> 0)-hypersurface of ℍm

𝔽
×ℝ which is 

foliated by horospheres
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that is, τ is decreasing and concave in (s1, s2), which clearly implies that s2 < +∞ and 
τ(s2) = 0. As in the preceding paragraph, this leads to the existence of a horizontal point of 
�. Therefore, �0 = � if (i) holds, which implies that � = Hs ×ℝ for some s ∈ ℝ.

Finally, let us assume that (ii) holds. In this case, one has a, b > 0, which gives that τ is 
increasing and convex. From this point, we get easily to the conclusion by reasoning just as 
in the last paragraph. 	�  ◻

An isometry � of ℍm
𝔽
 which fixes only one point p∞ ∈ ℍ

m
𝔽
(∞) is called parabolic. Such 

isometries have the following fundamental property: The horospheres of ℍm
𝔽
 centered at 

p∞ ∈ ℍ
m
𝔽
(∞) are invariant by parabolic isometries of ℍm

𝔽
 that fix p∞ (cf. [14, Proposition 

7.8]).
We point out that any isometry � of ℍm

𝔽
 has a natural extension to an isometry Φ of 

ℍ
m
𝔽
×ℝ. Namely,

We call Φ parabolic if � is parabolic. More specifically, if

is the family of parallel horospheres which are invariant by �, we say that � and Φ are  
F-parabolic isometries.

In the upper half-space model of ℍn = ℍ
n
ℝ
 , Euclidean horizontal translations in a fixed 

direction are parabolic. As for the other hyperbolic spaces, the parabolic isometries are 
more involved (see, e.g., [19]). Nevertheless, inspired by the real case, we say that para-
bolic isometries are translational.

Finally, let us remark that, given a family F  of parallel horospheres in ℍm
𝔽
, if a hyper-

surface � of ℍm
𝔽
×ℝ is invariant by F-parabolic isometries of ℍm

𝔽
×ℝ , then any connected 

component of any horizontal section 𝛴t ⊂ 𝛴 is contained in a (vertically translated) horo-
sphere of F.

Now, we are in position to classify all complete connected Hr(> 0)-hypersurfaces of 
ℍ

m
𝔽
×ℝ with no horizontal points which are invariant by parabolic isometries.

Theorem 11  Let F  be a family of parallel horospheres of ℍm
𝔽
. Assume that � is a com-

plete connected Hr(> 0)-hypersurface of ℍm
𝔽
×ℝ , r ∈ {1,… , n}, with no horizontal points, 

which is invariant by F-parabolic isometries. Then, up to ambient isometries, � is either 
a cylinder over a horosphere of  ℍm

𝔽
 or one of the embedded Hr-hypersurfaces obtained in 

Theorem 9.

Proof  Assume that � is not a cylinder over a horosphere of ℍm
𝔽
. By Theorem 10, we have 

that r(< n) is even and 0 < Hr < Hr
0.

In this case, the open set

τ� = aτ + b < a + b =
r(Hr

0 − Hr)

H0
r−1

≤ 0 and τ�� = aτ� + b < 0,

Φ(p, t) = (�(p), t), (p, t) ∈ ℍ
m
𝔽
×ℝ.

F = {fs ∶ ℝ
n−1

→ ℍ
m
𝔽
; s ∈ (−∞,+∞)}, fs(ℝ

n−1) = Hs ,

�0 ∶= {x ∈ � ;�(x) ≠ 0}
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is dense in �. Otherwise, there would be a vertical open set U ⊂ 𝛴 which would be nec-
essarily contained in a cylinder over a horosphere of F. But such a cylinder has constant 
r(< n) th mean curvature Hr

0 > Hr. Hence, the open set U cannot exist.

Given x0 ∈ �0 , there exists an (fs,�)-graph �� ∋ x0 in �0 with fs ∈ F. As we know, its 
associated τ-function is a solution of the ODE y� = ay + b determined by F  and Hr, which 
satisfies 0 < τ < 1 when restricted to a maximal interval (s0, s1), −∞ ≤ s0 < s1 ≤ +∞.

It is easily seen that �0, and so �, coincides with the entire graph �1 of Theorem 9 if τ is 
the constant solution. Hence, we can assume that τ is nonconstant. Then, the conditions on 
the parity of r and the sign of Hr − Hr

0 , as in the proof of Theorem 9, give that τ is increas-
ing and convex, which implies that s1 < +∞ and that τ(s1) = 1.

Consider now the solution (50) of y� = ay + b and denote it by τ̃. Since τ̃(0) = τ(s1) = 1, 
and the coefficients a and b are constants, by the uniqueness of solutions satisfying initial 
conditions, we have that τ(s) = τ̃(s − s1). This, together with the homogeneity of the horo-
spheres of ℍm

𝔽
, implies that �′ coincides with the (fs,�)-graph determined by τ̃. From this 

fact and the density of �0 in �, we conclude that � coincides with the embedded Hr-hyper-
surface �2 obtained in Theorem 9, as we wished to prove. 	�  ◻

Given a totally geodesic hyperplane E0 of ℍn, let us recall that there exists a family 
F ∶= {Es ; s ∈ (−∞,+∞)} of parallel hypersurfaces of ℍn such that the distance of any 
point of Es to E0 is |s|. The family F  foliates ℍn, and each element Es of F  , which is 
called an equidistant hypersurface, is properly embedded and homeomorphic to ℝn−1 
(Fig. 12).

We shall also write F  as a family of immersions:

Fig. 12   Equidistant hypersurfaces in the Poincaré ball model of ℍn
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that is, for each s ∈ (−∞,+∞), fs(ℝn−1) is the equidistant Es to E0 = f0(ℝ
n−1) .

Given a geodesic �p orthogonal to the elements of F, p ∈ E0, any equidistant hyper-
surface Es is totally umbilical with constant principal curvatures all equal to

with respect to the unit normal �s = � �
p
 (see Sect. 3). In particular, F  is isoparametric. Also, 

given a constant Hr , the coefficients a and b of the differential equation y� = ay + b associ-
ated with F  and Hr are:

It will be convenient to reconsider the constant

and recall that, for 1 ≤ r < n, the following identity holds:

Our next result establishes that, for Hr ∈ (0,Cr) , 1 ≤ r < n, there exists a one-parameter 
family of properly embedded Hr-hypersurfaces in ℍn ×ℝ which are foliated by (ver-
tical translations of) parallel equidistant hypersurfaces of ℍn. In this setting, we have 
0 < Hr∕Cr < 1, so we can define:

Notice that, for 1 ≤ r < n, one has Cr =
(
n−1

r

)
. This, together with (55), yields

Theorem 12  For any given integer r ∈ {1,… , n − 1} and any constant Hr ∈ (0,Cr), there 
exists a one-parameter family

of properly embedded and everywhere nonconvex Hr-hypersurfaces of  ℍn ×ℝ. Each ele-
ment �(�) of S  is homeomorphic to ℝn and is foliated by equidistant hypersurfaces. More-
over, �(�) is symmetric with respect to ℍn × {0} , and its height function is unbounded.

Proof  Let F  be the family of parallel equidistant hypersurfaces of ℍn as in (52). Given 
� ∈ (sr,+∞), let τ� be the solution of y� = ay + b satisfying y(�) = 1, where a and b are the 
functions in (53). From (54) and the definition of sr, one has

(52)F = {fs ∶ ℝ
n−1

→ ℍ
n ; s ∈ (−∞,+∞)},

ks = − tanh(s)

(53)a(s) = −(n − r) tanh(s) and b(s) = br tanh
1−r(s), br = rHr

(
n − 1

r − 1

)−1

.

Cr ∶=
n − r

n

(
n

r

)

(54)
br

n − r
=

Hr

Cr

⋅

(55)sr ∶= arctanh (Hr∕Cr)
1∕r.

(56)|Hr
sr | = Hr

S ∶= {�(�) ; � ∈ (sr,+∞)}

(57)tanhr(𝜆) >
br

n − r
,
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which implies that

i.e., τ� is decreasing near �.

We claim that τ� is decreasing on the whole interval [�,+∞) . To show that, it suffices to 
prove that τ� has no critical points in (�,+∞). Assuming otherwise, consider s1 > 𝜆 satisfy-
ing τ�

�
(s1) = 0. Since τ�

�
(s1) = a(s1)τ�(s1) + b(s1), we have that τ𝜆(s1) = −b(s1)∕a(s1) > 0. 

We also have a′ < 0 and b′ ≤ 0. Thus,

which implies that s1 is necessarily a local maximum for τ�. This proves the claim, for τ� 
is decreasing near �, so that a local maximum s1 > 𝜆 for τ� should be preceded by a local 
minimum.

We also have that τ� is positive in [�,+∞). Indeed, if we had τ�(s) ≤ 0 for some s > 𝜆, it 
would give τ�

𝜆
(s) = a(s)τ(s) + b(s) > 0, and then τ� would be increasing near s.

It follows from the above considerations that

Furthermore, since τ� is decreasing and positive, one has τ�
�
(s) → 0 as s → +∞. This, 

together with the equalities τ�
�
= aτ� + b and �r

�
= τ� , gives

Therefore, the (fs,�) graph ��(�) associated with �� (see Fig. 13) is an Hr-hypersurface of 
ℍ

n ×ℝ whose �-function is

τ�
𝜆
(𝜆) = −(n − r) tanh(𝜆) + br tanh

1−r(𝜆) < 0,

τ��
𝜆
(s1) = a�(s1)τ𝜆(s1) + b�(s1) < 0,

0 < τ𝜆(s) ≤ 1 = τ𝜆(𝜆) ∀s ∈ [𝜆,+∞).

(58)lim
s→+∞

𝜚𝜆(s) =
(
Hr∕Cr

)1∕r
> 0.

Fig. 13   A piece of the graph �′ , on which all trajectories of ∇� emanate from E� × {0} orthogonally
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As in the preceding proofs, we obtain a properly embedded Hr-hypersurface �(�) of 
ℍ

n ×ℝ by reflecting ��(�) with respect to ℍn × {0}, since ��(�) = 1 and 𝜚�
𝜆
(𝜆) < 0 . It is 

also clear from equalities (12) that, except for kn = �� , its principal curvatures ki are all 
positive, so that �(�) is nowhere convex.

Finally, considering (58) and the fact that �� is decreasing, we have

which clearly implies that the height function of �(�) is unbounded. 	�  ◻

Let us see now that, for any Hr ∈ (0,Cr), there exists an Hr-hypersurface � in ℍn ×ℝ 
which, as the ones in the above theorem, is foliated by equidistant hypersurfaces. How-
ever, � is not symmetric with respect to any horizontal hyperplane. Instead, it is asymp-
totic to a half-cylinder over an equidistant hypersurface of ℍn. The precise statement is 
as follows.

Theorem 13  Let F  be the family of parallel equidistant hypersurfaces of  ℍn as in (52). 
Given r ∈ {1,… , n − 1} and Hr ∈ (0,Cr), let sr > 0 be the constant defined in (55). Then, 
there exists a complete everywhere nonconvex Hr-hypersurface � in ℍn ×ℝ which is an 
(fs,�)-graph, s ∈ (sr,+∞). Furthermore, the height function of � is unbounded above and 
below, and � is asymptotic to Esr × (−∞, 0).

Proof  Let τ be the solution of the differential equation y� = ay + b associated with Hr and 
F  (i.e., with a and b as in (53)) which satisfies the initial condition τ(sr) = 1.

From its definition, we have that sr satisfies τ�(sr) = 0. In addition,

so that sr is a local maximum of τ. Reasoning as in the preceding proof, we get that τ , and 
so � = τ1∕r , is positive and decreasing in (sr,+∞). From this, we conclude analogously that 
�(s) → (Hr∕Cr)

1∕r as s → +∞.

Now, for a fixed s0 > sr , define

and let � be the corresponding (fs,�)-graph. As before, we have that � is nowhere convex. 
Denoting by Ωsr

 the convex connected component of ℍn − Esr
, we also have that � is a 

graph over ℍn − Ωsr
 (Fig. 14).

��(s) =
∫

s

�

��(u)√
1 − �2

�
(u)

du, s ∈ [�,+∞).

��(s) =
�

s

�

��(u)√
1 − �2

�
(u)

du ≥
�

s

�

��(u)du ≥
(
Hr∕Cr

)1∕r
(s − �),

τ��(sr) = a�(sr) + b�(sr) < 0,

�(s) ∶=
∫

s

s0

�(u)√
1 − �2(u)

du, s ∈ (sr,+∞),
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For s > s0 , we have

which gives that � , and so the height function of �, is unbounded above.

Finally, given a constant C > 0, there exists s̄ ∈ (sr, s0) such that

for ��(sr) = 0. Also, since �(sr) = 1, we can choose s̄ sufficiently close to sr in such a way 
that, for a fixed small 𝛿 > 0, the inequalities

hold. In this manner, for all s ∈ (sr, s̄) , one has

which implies that �(s) → −∞ as s → sr  , since � is fixed and the positive constant C is 
arbitrary. Therefore, the height function of � is unbounded below, and � is asymptotic to 
Esr

× (−∞, 0) in ℍn × (−∞, 0), as we wished to prove. 	�  ◻

�(s) =
�

s

s0

�(u)√
1 − �2(u)

du ≥
�

s

s0

�(u)du ≥ (Hr∕Cr)
1∕r(s − s0),

1

𝜚�(s)
< −C ∀s ∈ (sr, s̄),

arcsin 𝜚(s̄) − arcsin 𝜚(s0) > (𝜋∕2 − arcsin 𝜚(s0)) − 𝛿 > 0 and 𝜚(s̄) > 1 − 𝛿 > 0

𝜙(s) =
�

s

s0

𝜚�(u)𝜚(u)

𝜚�(u)
√
1 − 𝜚2(u)

du ≤ −C𝜚(s̄)
�

s

s0

𝜚�(u)√
1 − 𝜚2(u)

du

= − C𝜚(s̄)
�

𝜚(s)

𝜚(s0)

d𝜚√
1 − 𝜚2

= −C𝜚(s̄)(arcsin 𝜚(s) − arcsin 𝜚(s0))

≤ − C𝜚(s̄)(arcsin 𝜚(s̄) − arcsin 𝜚(s0))

≤ − C(1 − 𝛿)((𝜋∕2 − arcsin 𝜚(s0)) − 𝛿),

Fig. 14   A piece of the (f
s
,�)-graph � which is above ℍn × {0}. As s → −∞ , the trajectories of ∇� converge 

asymptotically to E
s
r

× (0,−∞)
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A family F = {Es ; s ∈ (−∞,+∞) of equidistant hypersurfaces in ℍn determines a 
group of translational isometries which we shall call F-hyperbolic. In the upper half-space 
model of ℍn, taking E0 as a Euclidean half vertical hyperplane orthogonal to �∞ℍn through 
the “origin” o,   we have that the F-hyperbolic isometries are the Euclidean homotheties 
from o. It should be noticed that the equidistant hypersurfaces of F  are all invariant by  
F-hyperbolic isometries.

The natural extension of an F-hyperbolic isometry of ℍn to ℍn ×ℝ will also be called 
F-hyperbolic. If � is a hypersurface of ℍn ×ℝ which is invariant by F-hyperbolic iso-
metries, it is clear that any connected component of any horizontal section �t of � is con-
tained in Es × {t} for some s ∈ (−∞,+∞).

Next, we classify Hr(> 0)-hypersurfaces of ℍn ×ℝ (without horizontal points or totally 
geodesic horizontal sections) which are invariant by hyperbolic translations.

Theorem  14  Let F  be the family of parallel equidistant hypersurfaces of ℍn as in (52). 
Assume that, for some r ∈ {1,… , n}, � is a complete connected Hr(> 0)-hypersurface 
of  ℍn ×ℝ which is invariant by F-hyperbolic translations. Assume further that � has no 
horizontal points and that no horizontal section �t of � is totally geodesic in ℍn × {t} (i.e., 
𝛴t ⊄ E0 × {t}). Under these conditions, the following assertions hold: 

	 (i)	 r < n.
	 (ii)	 0 < Hr < Cr .
	 (iii)	 � is either the cylinder over the equidistant  Esr or, up to an ambient isometry, one 

of the embedded hypersurfaces obtained in Theorems 12–13.

Proof  Set �0 ∶= {x ∈ � ;�(x) ≠ 0} and assume �0 ≠ ∅. Given x0 ∈ �0  , as in previous 
proofs, we can assume there is an open set 𝛴′ ⊂ 𝛴0 which is an (fs,�)-graph containing x0 . 
Its τ function satisfies τ� = aτ + b , where a and b are the functions given in (53). Also, τ 
is defined in a maximal interval (s0 , s1) ⊂ ℝ such that 0 < τ|(s0,s1) < 1. Since no horizontal 
section of � is totally geodesic, we can assume 0 < s0 < s1 ≤ +∞.

The maximality of (s0, s1) gives that τ(s0) = 0 or τ(s0) = 1. In the former case, we 
have τ�(s0) = b(s0) > 0. Then, �(s0) is well defined (by Lemma 2) and ��(s0) = 0, so that 
x = (fs0 (p),�(s0)), p ∈ ℝ

n−1, is a horizontal point of � , contrary to our hypothesis. Then, 
we must have τ(s0) = 1. In particular, near s0 , τ is decreasing in (s0, s1), which implies that 
r < n. Indeed, for r = n, τ� = b > 0.

Assume now that Hr ≥ Cr , r < n. Then, we have

which contradicts that τ is decreasing near s0 .

It follows from the above considerations that, if �0 ≠ ∅, then r < n and Hr < Cr . Fur-
thermore, a direct computation gives that τ�(s0) ≤ 0 if and only if s0 ≥ sr . If s0 = 𝜆 > sr , 
then τ coincides with the function τ� of the (fs,�)-graph associated with the hypersur-
face �(�) of Theorem  12. From this, arguing as in preceding proofs, we conclude that 

τ�(s0) =a(s0) + b(s0) = −(n − r) tanh(s0) + br tanh
1−r(s0)

=(n − r)((Hr∕Cr) tanh
1−r(s0) − tanh(s0))

≥(n − r)(tanh1−r(s0) − tanh(s0)) > 0,
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� = �(�). By the same token, if s0 = sr, then � = �� is the complete graph obtained in 
Theorem 13.

Let us suppose now that �0 = �. In this case, we must have � = Es ×ℝ, where 
Es = fs(ℝ

n−1) is an equidistant hypersurface with rth mean curvature Hr
s = Hr  , so that 

s = sr (see (56)). Therefore, we have r < n (since we are assuming Hr > 0 ) and

which concludes our proof. 	� ◻

7 � Translational r‑minimal Hypersurfaces of ℍm

𝔽
×ℝ.

In this section, we construct and classify r-minimal hypersurfaces in ℍm
𝔽
×ℝ which are 

invariant by translational isometries. It will be convenient to consider first the case of 
hyperbolic isometries of ℍn.

Theorem  15  Let F = {fs ; s ∈ (−∞,+∞)} be a family of parallel equidistant hypersur-
faces to a totally geodesic hyperplane E0 = f0(ℝ

n−1) of  ℍn. Then, for each r ∈ {1,… , n}, 
there exists a one-parameter family S = {𝛴(𝜆) ; 𝜆 > 0} of properly embedded r-minimal 
hypersurfaces of  ℍn ×ℝ which are all homeomorphic to ℝn and invariant by F-hyper-
bolic translations. Each element �(�) ∈ S  has the following additional properties: 

(i)	 For r = n, �(�) is a constant angle entire r-minimal graph over ℍn whose height func-
tion is unbounded above and below.

For r < n, we distinguish the following cases: 

(ii)	 �𝜆 > 1 ∶ �(�) is symmetric with respect to the horizontal hyperplane P0 = ℍ
n × {0} 

and is contained in a slab ℍn × (−�, �), 𝛼 > 0.

(iii)	 �� = 1 ∶ �(�) is an (fs,�)-graph ( s > 0 ) which is bounded above, unbounded below, 
and asymptotic to E0 × (0,−∞).

(iv)	 �𝜆 < 1 ∶ �(�) is an entire graph over ℍn which is symmetric with respect to E0 , and is 
contained is a slab ℍn × (−�, �), 𝛼 > 0.

Furthermore, except for the cylinders Es ×ℝ, s ≠ 0 (in the case r = n ), and up to ambient 
isometries, the elements of S  are the only complete nontotally geodesic r-minimal hyper-
surfaces of  ℍn ×ℝ which are invariant by hyperbolic translations.

Proof  The Eq.  (15) determined by F  and Hr = 0 is:

For r = n, its solution τ is constant. So, given 𝜆 > 0, defining

Hr = |Hr
sr | =

(
n − 1

r

)
tanhr(sr) = Cr tanh

r(sr) < Cr ,

(59)y� = a(s)y, a(s) = −(n − r) tanh(s).
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we have that the corresponding (fs,�)-graph �(�) is an entire n-minimal graph whose level 
hypersurfaces are the leaves of F. Clearly, the height function of �(�) is unbounded above 
and below. Moreover, it follows from (9) that �(�) is a constant angle hypersurface. This 
proves (i).

Let us suppose now that 1 ≤ r < n. Given 𝜆 > 0, set

It is easily checked that τ� is the solution of (59) satisfying τ�(0) = �.

Assume that 𝜆 > 1. Then, defining s� ∶= arccosh (�1∕(n−r)), one has

Hence, setting

we have that the (fs,��)-graph ��(�) is a well-defined r-minimal hypersurface, for 
τ�(s𝜆) < 0. Also, since τ�(s�) = 1, the closure of ��(�) intersects P0 orthogonally. Thus, we 
obtain an r-minimal hypersurface �(�) by reflecting ��(�) about P0.

As for the boundedness of �� , we first observe that, from the equalities τ� = �r
�
 and 

τ�
�
= aτ�, we have �� = (r∕a)��

�
. In addition, the function 1/a is bounded above by 

−1∕(n − r) in (0,+∞). Hence,

which finishes the proof of (ii).

Assuming now � = 1, let us fix s0 > 0 and define

Since τ�(0) = 0, we can mimic the final part of the proof of Theorem  13 and conclude 
that � is unbounded below and that the corresponding (fs,�)-graph � is asymptotic to 
E0 × (−∞, 0). Also, proceeding as in (61), we can show that � is bounded above. This 
proves (iii).

Given 0 < 𝜆 < 1, we have that 0 < τ𝜆 < 1 in (0,+∞). So, we can define �� as in (60), 
replacing s� by 0. Analogously, we have that �� is bounded above and that the boundary of 
the (fs,��)-graph ��(�) is E0 × {0} ⊂ P0 .

�(s) = �s, s ∈ (−∞,+∞),

τ�(s) ∶= �coshr−n(s), s ∈ (−∞,+∞).

0 < τ𝜆(s) ≤ 1 = τ𝜆(s𝜆) ∀s ∈ [s𝜆,+∞).

(60)��(s) ∶=
∫

s

s�

��(u)√
1 − �2

�
(u)

du, �� = τ
1∕r

�
, s ∈ (s�,+∞),

(61)

��(s) =
�

s

s�

r��
�
(u)

a(u)

√
1 − �2

�
(u)

du ≤ −
r

n − r �

��(s)

��(s�)

d��√
1 − �2

�

=
r

n − r
(arcsin ��(s�) − arcsin ��(s)) ≤

�r

2(n − r)
,

�(s) =
∫

s

s0

�(u)√
1 − �2(u)

du, � = τ
1∕r

1
, s ∈ (0,+∞).
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Notice that ��
�
(0) = ��(0)∕

√
1 − �2

�
(0) is well defined and positive, since ��(0) is nei-

ther 0 nor 1. Thus, we obtain a complete properly embedded r-minimal hypersurface �(�) 
from ��(�) by reflecting it with respect to P0 , and then with respect to the totally geodesic 
vertical hyperplane E0 ×ℝ (Fig. 15). This shows (iv).

Assume now that � is a complete nontotally geodesic r-minimal hypersurface of ℍn ×ℝ 
which is invariant by F-hyperbolic translations. Set

and suppose that 1 ≤ r < n. Then, �0 ≠ ∅. Otherwise, � would be either a horizontal 
hyperplane or a cylinder over the hyperplane E0 of ℍn. In both cases, � would be totally 
geodesic, which is contrary to our assumption.

Therefore, if 1 ≤ r < n, for each x0 ∈ �0 , there is an (fs,�)-graph 𝛴′ ⊂ 𝛴0 which con-
tains x0  , and whose τ-function is a solution of (59). More precisely, for some c > 0, this 
solution is given by

Now, recall that in the cases (ii)–(iv) above, the corresponding function τ� satisfies 
τ�(0) = �. Thus, for � ∶= τ(0) = c coshn−r(s0), the function τ coincides with τ�, which 
implies that 𝛴� ⊂ 𝛴(𝜆). In addition, no �(�) ∈ S  has horizontal or totally geodesic points, 
which gives that �0 is open and dense in �. Therefore, � coincides with �(�).

Finally, let us suppose that r = n. If �0 = �, then � = Es for some s ≠ 0. If �0 ≠ ∅, then 
there exists an (fs,�)-graph 𝛴′ ⊂ 𝛴0 whose τ-function is constant. In particular, up to a 

�0 ∶= {x ∈ � ;�(x)∇�(x) ≠ 0}

τ(s) = c

(
cosh s0

cosh s

)n−r

, s0 , s ∈ (−∞,+∞).

Fig. 15   Half of the (f
s
,�)-graph ��(�) (above ℍn × {0} ) and half of its reflection with respect to E0 (below 

ℍ
n × {0})
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vertical translation, we have �(s) = �s for some 𝜆 > 0, so that �� = � is the entire graph 
�(�) given in (i). 	�  ◻

Remark 6  It should be mentioned that, with an approach different from ours, the particular 
case r = 1 of Theorem 15 was considered in [3].

Next, we obtain all complete nontotally geodesic r-minimal hypersurfaces of ℍm
𝔽
×ℝ 

which are invariant by parabolic isometries.

Theorem  16  Let F = {fs ; s ∈ (−∞,+∞)} be a family of parallel horospheres in ℍm
𝔽
. 

Then, for any r ∈ {1,… , n}, there exists a properly embedded r-minimal hypersurface � 
of  ℍm

𝔽
×ℝ which is invariant by F-parabolic isometries. In addition, � is homeomorphic 

to ℝn and has the following properties: 

	 (i)	 For r = n, � is a constant angle entire graph over ℍm
𝔽

 whose height function is 
unbounded above and below.

	 (ii)	 For r < n, � is symmetric with respect to ℍm
𝔽
× {0} and is contained in a slab 

ℍ
m
𝔽
× (−�, �).

Furthermore, except for the cylinders Hs ×ℝ (in the case r = n ), and up to ambient iso-
metries, � is the only complete nontotally geodesic r-minimal hypersurface of  ℍn ×ℝ 
which is invariant by parabolic isometries.

Proof  The proof of the existence of � as in (i) is analogous to the one given in the pre-
ceding theorem. So, let us assume r < n. In this case, the Eq.  (15) determined by F  and 
Hr = 0 takes the form

and its positive solutions are

It is easily checked that, since the horospheres of ℍm
𝔽
 are pairwise congruent, an (fs,�) 

graph with τ-function τ� does not depend on �. More precisely, two such graphs obtained 
from functions τ�1 and τ�2 , �1 ≠ �2, are isometric. Therefore, we can assume � = 1 and set 
τ ∶= τ1 . Then, we have

Since τ�(0) = aτ(0) = a > 0, writing �r = τ|(−∞,0) , we have

is well defined, and so is the corresponding (fs,�)-graph �′. Also, τ(0) = 1, so that the 
tangent spaces of �′ along its boundary are all vertical. Therefore, we obtain the stated 
r-minimal hypersurface � by reflecting �′ about P0 = ℍ

m
𝔽
× {0}.

(62)y� = ay, a =
rHr

0

H0
r−1

> 0 ,

(63)τ𝜆(s) = 𝜆eas, 𝜆 > 0, s ∈ (−∞,+∞).

0 < τ(s) < 1 = τ(0) ∀s ∈ (−∞, 0).

�(s) =
∫

s

0

�(u)√
1 − �2(u)

du, s ∈ (−∞, 0),
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Observe that, for all s ∈ (−∞, 0), one has

Hence, setting 𝛼 ∶= 𝜋r∕2a > 0, we have that �(s) → −� as s → −∞, which proves that � 
is contained in the slab ℍm

𝔽
× (−�, �).

As for the uniqueness of � , notice that the following hold:

•	 The τ-function of any r-minimal (fs,�)-graph, fs ∈ F, is a positive solution of (62) (if 
r < n ) or is a positive constant (if r = n).

•	 � has no horizontal points.
•	 A vertical F-invariant hypersurface of ℍm

𝔽
×ℝ is r-minimal if and only if r = n.

•	 The graph in (i) has no vertical points.

These facts allow us to argue just as in preceding proofs, and then show the uniqueness of � as 
asserted. 	� ◻

8 � Uniqueness of Rotational H
r
‑spheres of ℚn

�
×ℝ

In this concluding section, we concern the uniqueness of the rotational Hr-spheres we con-
structed in Sect. 4. We restrict ourselves to ℚn

�
×ℝ , with � ∈ {−1, 1} and n ≥ 3. As we men-

tioned before, the case n = 2 was considered in [1, 17].
We obtain a Jellett–Liebmann-type theorem by showing that a compact, connected and 

strictly convex Hr-hypersurface of ℚn
�
×ℝ is a rotational embedded sphere (cf. Theorem 17). 

We also show the uniqueness of these spheres under completeness or properness assumptions, 
instead of compactness (cf. Theorem 18 and Corollary 2).

For the proof of Theorem 18, we make use of a height estimate for convex graphs in M ×ℝ 
which we establish in the next proposition. First, we compute the Laplacian of both the height 
function � and the angle function � of an arbitrary hypersurface � of a general product M ×ℝ.

Given a smooth function � on �, let us denote its Laplacian by Δ� , i.e.,

In particular, from Eq.  (4), the Laplacian of � is given by

Recall that, for X, Y ∈ T�, the Codazzi Eq. reads as

where R is the curvature tensor of M ×ℝ, ⊤ denotes the tangent component of the tangent 
bundle T� of �, and, by definition,

Observing that

−�(s) =
∫

0

s

eau∕r√
1 − e2au∕r

du =
r

a
(�∕2 − arcsin(eas∕r)).

Δ� ∶= trace(Hess � ).

(64)Δ� = �H, H = H1 .

(R(X, Y)N)⊤ =
(
∇YA

)
X −

(
∇XA

)
Y ,

(
∇YA

)
X ∶= ∇YAX − A∇YX.
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we have from (3) that

which yields

Now, let us fix x ∈ � and an orthonormal frame {X1 ,… ,Xn} in a neighborhood of x in �, 
which is geodesic at x,  that is

Writing �j = Xj(�), we have ∇� =
∑

j �jXj. Therefore,

which implies that, at the chosen point x ∈ �,

Since x is arbitrary, we get from this last equality and (65) that, on �,

where Ric denotes the Ricci curvature tensor of M ×ℝ and ‖A‖2 ∶= traceA2.

Remark 7  For the next results, except for Theorem 19, we order the principal curvatures of 
a hypersurface � of M ×ℝ as

Proposition 3  Consider an arbitrary Riemannian manifold   M,   and let 𝛴 ⊂ M ×ℝ be 
a compact vertical graph of a nonnegative function defined on a domain Ω ⊂ M × {0}. 
Assume � strictly convex up to 𝜕𝛴 ⊂ M × {0}. Under these conditions, the following 
height estimate holds:

∇X∇𝜉 =

(
∇X∇𝜉

)⊤

= −

(
∇X𝛩N

)⊤

= 𝛩AX,

−∇X∇� = ∇XA∇� =
(
∇XA

)
∇� + A∇X∇� =

(
∇XA

)
∇� + �A2X,

(65)∇X∇𝛩 = −(R(∇𝜉,X)N)⊤ −
(
∇∇𝜉A

)
X − 𝛩A2X.

∇Xi
Xj (x) = 0 ∀i, j = 1,… , n.

n�
i=1

⟨�∇∇�A
�
Xi , Xi⟩ =

n�
i=1

�⟨∇∇�AXi , Xi⟩ − ⟨A∇∇�Xi , Xi⟩
�

=

n�
i,j=1

�j(⟨∇Xj
AXi , Xi⟩ − ⟨A∇Xj

Xi , Xi⟩)

=

n�
i,j=1

�j(Xj⟨AXi,Xi⟩ − ⟨AXi,∇Xj
Xi⟩ − ⟨A∇Xj

Xi , Xi⟩)

=⟨∇�,∇H⟩ −
n�

i,j=1

�j(⟨AXi,∇Xj
Xi⟩ − ⟨A∇Xj

Xi , Xi⟩),

n�
i=1

⟨�∇∇�A
�
Xi , Xi⟩ = ⟨∇�,∇H⟩.

(66)Δ� = Ric(∇�,N) − ⟨∇�,∇H⟩ − �‖A‖2,

k1 ≤ k2 ≤ ⋯ ≤ kn−1 ≤ kn .
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Proof  Consider in � the “inward” orientation, so that its angle function � is nonpositive. 
Choose 𝛿 > 0 satisfying 1∕𝛿 < inf𝛴 k1 and define on � the function

We claim that � has no interior maximum. Indeed, assuming otherwise, let x ∈ � − �� be 
a maximum point of � . In this case, from (3), we have

Hence, if we had ∇�(x) ≠ 0, then 1∕� would be an eigenvalue of A at x,  which is impos-
sible, by our choice of �. Thus, x is a critical point of �. Since � is strictly convex, x is nec-
essarily its highest point. In particular, �(x) = −1. This, together with identities (64) and 
(66), gives that, at x,

However, from our choice of � and the strict convexity of � , we have

which contradicts (68). Therefore, � attains its maximum on ��, which implies that � ≤ 0 
on �, for �|�� = �� ≤ 0. Hence,

The result, then, follows from this last inequality, since it holds for any positive 
𝛿 > 1∕ inf𝛴 k1. 	�  ◻

Remark 8  Proposition 3 has its own importance, since it establishes height estimates for 
vertical graphs in M ×ℝ making no assumptions on M. In addition, no curvature of such a 
graph is assumed to be constant.

In the next two theorems, we apply the Alexandrov reflection technique. Since the argu-
ments are standard, the proofs will be somewhat sketchy on this matter (see, e.g., [7, Theo-
rems 4.2 and 5.1] and [24, Theorem 1.1]). We add that the proof of Theorem 17 is, essen-
tially, the one for [8, Corollary 1], in which the case r = 1 was considered.

Theorem  17  (Jellett–Liebmann-type theorem) Let � be a compact connected strictly 
convex Hr(> 0)-hypersurface of   ℚn

�
×ℝ ( n ≥ 3 ). Then, � is an embedded rotational  

Hr-sphere.

Proof  Since � is compact, its height function � has a maximal point x. This, together with 
the strict convexity of � , allows us to apply [8, Theorems 1 and 2] and conclude that � is 
embedded and homeomorphic to �n . Thus, for � = −1, the result follows from [15, Theo-
rem 7.6], the Alexandrov-type theorem we mentioned in the introduction.

(67)�(x) ≤
1

inf� k1
∀x ∈ �.

� = � + ��.

0 = ∇�(x) = ∇�(x) + �∇�(x) = ∇�(x) − �A∇�(x).

(68)0 ≥ Δ� = −H + �‖A‖2.

H

𝛿
< k1H = k1(k1 +⋯ + kn) ≤ k2

1
+⋯ + k2

n
= ‖A‖2,

�(x) ≤ −��(x) ≤ � ∀x ∈ �.
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For � = 1, we can perform Alexandrov reflections on � with respect to horizontal 
hyperplanes Pt ∶= �

n × {t} coming down from above �. For some t0 < 𝜉(x), the reflection 
of the part of � above Pt0

 will have a first contact with �. Then, by the tangency principle 
� is symmetric with respect to Pt0

 . Therefore, assuming t0 = 0 and identifying �n × {0} 
with �n, we conclude that � is a bigraph over its projection �(�) to �n . As a consequence, 
�0 ∶= � ∩ �

n is the boundary of �(�) in �n.

By [8, Lemma 1], the second fundamental form of �0 , as a hypersurface of  �n , is posi-
tive definite. In particular, �0 is nontotally geodesic in  �n . Thus, by [11, Theorem 1], �0 
is contained in an open hemisphere �n

+
 of �n , which implies that the same is true for �(�), 

that is, 𝛴 ⊂ 𝕊
n
+
×ℝ. In this setting, we can apply Alexandrov reflections on “vertical 

hyperplanes” (𝕊n−1 ∩ 𝕊
n
+
) ×ℝ, where �n−1 ⊂ �

n is a totally geodesic (n − 1)-sphere of �n , 
and conclude that � is rotational. 	�  ◻

Let us show now that, regarding Theorem  17, the compactness hypothesis can be 
replaced by completeness if we add a one point condition on the height function of �. In 
the case � = −1 , we also have to impose a condition on the second fundamental form of �, 
which turns out to be a necessary hypothesis (see Remark 10, below).

Theorem  18  Let � be a complete connected strictly convex Hr(> 0)-hypersurface of 
ℚ

n
�
×ℝ ( n ≥ 3 ) whose height function � has a local extreme point. For � = −1 , assume 

further that the least principal curvature k1 of � is bounded away from zero. Then, � is an 
embedded rotational sphere.

Proof  As in the previous theorem, � fulfills the hypotheses of [8, Theorems 1 and 2], 
which implies that � is properly embedded and homeomorphic to either �n or ℝn. Further-
more, in the latter case, the height function of � is unbounded and has a single extreme 
point x,  which we assume to be a maximum.

For � = 1, the height estimates obtained in [7, Theorem  4.1-(i)] forbid � to be 
unbounded. Thus, in this case, � is homeomorphic to �n and the result follows from 
Theorem 17.

Let us consider now the case � = −1. Assume, by contradiction, that � is homeomorphic 
to ℝn, so that � is unbounded below. Hence, given a horizontal hyperplane Pt = M × {t} 
with t < 𝜉(x), the part �+

t
 of � which lies above Pt must be a vertical graph with bound-

ary in Pt . If not, for some t′ between t and �(x), Pt′ would be orthogonal to � at one of 
its points. Then, the Alexandrov reflection method would give that � is symmetric with 
respect to Pt′ , which is impossible, since we are assuming � unbounded, and the closure of 
�+

t�
 in � is compact.

It follows from the above that, for |t| sufficiently large, one has

which clearly contradicts Proposition 3. Therefore, � is homeomorphic to �n and, again, 
the result follows from Theorem 17. 	�  ◻

𝜉(x) − t >
1

inf𝛴 k1
≥

1

inf𝛴+
t
k1

,
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Remark 9  In Theorems 17 and 18, the hypothesis of strict convexity of � is automatically 
satisfied for r = n, so it can be dropped in this case. Indeed, in both theorems, the height 
function � has a critical point x ∈ � , which can be assumed to be a maximum. Then, tak-
ing the inward orientation on �, we have that �(x) = −1, which, together with equality (4), 
yields

However, Hn = detA > 0 on � . Thus, at x,  and then on all of � , the second fundamental 
form is positive definite, that is, � is strictly convex.

Remark 10  It follows from the considerations of Remark 1 in Sect. 4 that, for r < n, the 
hypothesis on the least principal curvature of � in Theorem 18 is necessary. As shown by 
Theorem 5, the same is true for the hypothesis on the height function � in the case � = 1 
and r < n.

Now, we consider the dual case of Theorem  18, assuming that the height function 
of the hypersurface � has no critical points. First, we recall that if M is an arbitrary 
Riemannian manifold, a hypersurface 𝛴 ⊂ M ×ℝ is said to be cylindrically bounded 
if there exists a closed geodesic ball B ⊂ M such that 𝛴 ⊂ B ×ℝ. In particular, if M is 
compact, any hypersurface 𝛴 ⊂ M ×ℝ is cylindrically bounded.

Theorem 19  Assume n ≥ 3, and let � be a proper, convex, connected Hr(> 0)-hypersur-
face of  ℚn

�
×ℝ with no horizontal points. Then, if � is cylindrically bounded, it is a cylin-

der over a geodesic sphere of  ℚn
�
 . In particular, r < n.

Proof  From the hypothesis and [8, Theorem  3], � = �0 ×ℝ, where �0 is an embedded 
convex topological sphere of ℚn

�
 . Moreover, in the case � = 1, �0 is contained in an open 

hemisphere of �n.

At a given point x ∈ �, the principal curvatures are k1, … , kn−1, 0, where k1 ,… , kn−1 
are the principal curvatures of 𝛴0 ⊂ ℚ

n
𝜖
 at �

ℚn
�
(x) ∈ �0 . In particular, �0 has constant rth 

mean curvature Hr if r < n, which implies that, in this case, �0 is a geodesic sphere of ℚn
�
 

(see [21, 23]). Also, Hn = 0 on � , so we must have r < n, since we are assuming Hr > 0. 	
� ◻

Since a cylinder 𝛴0 ×ℝ ⊂ ℚ
n
𝜖
×ℝ is nowhere strictly convex, it follows from the 

above theorem that, for n ≥ 3, a connected, proper, cylindrically bounded and strictly 
convex Hr-hypersurface of ℚn

�
×ℝ must have a horizontal point. This fact, together with 

Theorem 18, gives our last result:

Corollary 2  For n ≥ 3, any connected, properly immersed and strictly convex Hr(> 0)

-hypersurface 𝛴 ⊂ 𝕊
n ×ℝ is necessarily an embedded rotational Hr-sphere. The same is 

true for 𝛴 ⊂ ℍ
n ×ℝ if we assume further that � is cylindrically bounded and has least 

principal curvature bounded away from zero.

⟨AX,X⟩ = −Hess �(X,X) ≥ 0 ∀X ∈ Tx�.
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