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Abstract Given orientable Riemannian manifolds Mn and MnC1, we study flows Ft W
Mn!MnC1, called Weingarten flows, in which the hypersurfaces Ft .M/ evolve in
the direction of their normal vectors with speed given by a function W of their principal
curvatures, called a Weingarten function, which is homogeneous, monotonic increasing with
respect to any of its variables, and positive on the positive cone. We obtain existence results
for flows with isoparametric initial data, in which the hypersurfacesFt WMn!MnC1 are
all parallel, and MnC1 is either a simply connected space form or a rank-one symmetric
space of noncompact type. We prove that the avoidance principle holds for Weingarten flows
defined by odd Weingarten functions, and also that such flows are embedding preserving.

1. Introduction

Given an open set � � Rn containing �C WD ¹.k1; : : : ; kn/Iki > 0º, we say that W D
W.k1; : : : ; kn/ 2 C

1.�/ is a Weingarten function if it is symmetric, homogeneous,
monotonic increasing with respect to any of its variables, and positive on �C. For
a hypersurface f WM n !M nC1 (M n and M nC1 are arbitrary orientable Riemann-
ian manifolds), denote by k1; : : : ; kn its principal curvature functions. Assuming that
.k1.p/; : : : ; kn.p// 2 � for all p 2M , we define the Weingarten function Wf of f
associated to W as

Wf .p/ WDW
�
k1.p/; : : : ; kn.p/

�
; p 2M:

If Wf is constant on M , we say that f is a W -hypersurface.
The higher-order mean curvatures Hr , 1 � r � n, and the squared norm of the

second fundamental form kAk2 are distinguished examples of Weingarten functions.
They are defined as

Hr D
X

i1<���<ir

ki1 : : : kir and kAk2 D

nX
iD1

k2i :

In this paper, we shall consider the problem of finding a one-parameter family
of smooth-oriented immersions F.�; t / WM n!M nC1, t 2 Œ0; T /, which, for a given
Weingarten function W 2 C1.�/, satisfy the evolution equation:

(1)

´
@F
@t
.p; t/DW.p; t/N.p; t/

F.p; 0/D f .p/;
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whereN.p; t/ is the unit normal to the hypersurface Ft WD F.�; t /, andW.�; t /DWFt is
the Weingarten function of Ft associated to W . We shall call such a family of immer-
sions a Weingarten flow (or a W -flow, in order to specify the function W ) in M nC1

with initial data f .
Huisken and Polden [7] have established existence of short time solutions to (1).

Here, we shall seek solutions such that the immersions Ft WM n!M nC1 are all paral-
lel to the initial data f ; that is,

(2) Ft .p/D expf .p/
�
'.t/N.p/

�
; .p; t/ 2M � Œ0; T /;

where exp stands for the exponential map of M nC1, ' 2 C1Œ0; T / satisfies '.0/D 0,
and N is the unit normal to f . We call Ft a parallel '-flow and choose

(3) N.p; t/D d expf .p/
�
'.t/N.p/

�
N.p/

as the unit normal field of Ft .
As we shall see, if a parallel '-flow is a solution to (1), then each immersion Ft W

M n!M nC1 is necessarily a W -hypersurface. This fact leads us to consider parallel
families inM nC1 such that, on each hypersurface of the family, the principal curvatures
are constant functions. In particular, such families are isoparametric.

Recall that a family of parallel hypersurfaces in a Riemannian manifold is called
isoparametric if each of them has constant mean curvature. In this case, each hypersur-
face of the family is also called isoparametric. As proved by Cartan, a hypersurface of a
space form is isoparametric if and only if its principal curvatures are constant functions.
Despite the existence of manifolds admitting isoparametric hypersurfaces with noncon-
stant principal curvatures, we shall abuse the terminology and call isoparametric only
the ones having constant principal curvatures. In this context, the simply connected
space forms QnC1� of constant sectional curvature � 2 ¹0; 1;�1º, as well as the rank-
one symmetric spaces of noncompact type (i.e., the hyperbolic spaces Hm

F
), are natural

sources of parallel W -flows since these spaces have many families of isoparametric
hypersurfaces (see Section 2.1 for details).

Our first main result, as stated below, concerns parallel Weingarten flows in space
forms of nonpositive curvature.

THEOREM 1
For � 2 ¹0;�1º, let f WM n!QnC1� be a complete non-totally geodesic isoparametric
hypersurface of QnC1� , and letW 2 C1.�/ be a Weingarten function. Then there exists
a parallel '-flow Ft defined on a maximal interval Œ0; T /, T �C1, which is a solution
to (1), and has the following properties, according to the isoparametric type of f .M/:

(i) If f .M/�HnC1 is a horosphere, then T DC1 and ¹Ft .M/; t 2 .0;C1/º

is a family of horospheres in HnC1 which foliates the open horoball bounded
by f .M/.

(ii) If f .M/�HnC1 is an equidistant hypersurface to a totally geodesic
hyperplane …�HnC1, then T DC1 and Ft .M/!… as t!C1.
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(iii) If f .M/�QnC1� is either a geodesic sphere or a generalized cylinder, then
T <C1, '.T / is the focal distance of f .M/, and Ft .M/ collapses into the
focal set of f .M/ at t D T .

We also consider W -flows in SnC1 from its isoparametric hypersurfaces. It was estab-
lished by Münzner [10] that the focal set of each family F of complete isoparametric
hypersurfaces of SnC1 has two (and only two) well determined components, F� and
FC. In this setting, we shall say that such a family is positively oriented if the normal
vectors of its hypersurfaces “point toward” FC (see Section 2.1 for a precise defini-
tion). Then we obtain the following result (g 2 ¹1; 2; 3; 4; 6º is the number of distinct
principal curvatures of the elements of F ).

THEOREM 2
Let F D ¹f£WM ! SnC1I£ 2 .0;�=g/º be a family of positively oriented isoparamet-
ric hypersurfaces of SnC1, and let W 2 C1.�/ be a Weingarten function such that
Wf£ is well defined for all f£ 2 F . Given £0 2 .0;�=g/, assume that Wf£0 > 0 (resp.
Wf£0 < 0) and that the function £ 7!Wf£0�£ (resp. £ 7!Wf£0C£

) is increasing (resp.
decreasing) on Œ0; £0/ (resp. on Œ0;�=g � £0/). Under these conditions, the maximal
parallel '-flow solution Ft D f£0�'.t/ to (1) with initial data F0 D f£0 collapses into
the focal set FC (resp. F�) at t D '�1.£0/ (resp. t D '�1.£0 � �=g/).

It should be mentioned that Theorems 1 and 2 constitute extensions of the main results
of [11], where the authors addressed mean curvature flows by parallel hypersurfaces in
QnC1� .

By considering the classical isoparametric hypersurfaces of the hyperbolic spaces
Hm

F
(namely, geodesic spheres and horospheres), we establish the following theorem.

THEOREM 3
Let f WM n! Hm

F
be either a horosphere or a geodesic sphere of Hm

F
, and let W 2

C1.�/ be a Weingarten function. Then there exists a parallel '-flow Ft defined on a
maximal interval Œ0; T /, T �C1, which is a solution to (1). In addition, the following
hold:

(i) If f .M/ is a horosphere, then T DC1 and ¹Ft .M/; t 2 .0;C1/º is a
family of horospheres in Hm

F
which foliates the open horoball bounded by

f .M/.
(ii) If f .M/ is a geodesic sphere, then T <C1, '.T / is the radius of f .M/,

and Ft .M/ collapses into the center of f .M/ at t D T .

Our intent in Theorem 3 is to obtain a unified result—that is, one that would be valid
for all hyperbolic spaces Hm

F
. Nevertheless, a similar result could be obtained by con-

sidering all isoparametric families of some specific hyperbolic space. In fact, this was
done in Theorem 1 for the real hyperbolic space HnC1. On this matter, it could be inter-
esting to explore the results in [1], where the authors, among other accomplishments,
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determine the principal curvatures of all homogeneous hypersurfaces of the complex
hyperbolic space. We remark that homogeneous hypersurfaces are isoparametric and
have constant principal curvatures.

An important property shared by many kinds of flows in Euclidean space is the
avoidance principle, which essentially says that two flows with disjoint initial data
remain disjoint until one of them colapses. Here, by means of a result by Hamilton [6],
we establish an avoidance principle for W -flows Ft WM n!M nC1 whose Weingarten
function W 2 C1.�/ is odd. Setting k WD .k1; : : : ; kn/, this means that W admits an
extension to �� WD ¹�kIk 2 �º which satisfiesW.�k/D�W.k/. For instance, as one
can easily check, for r odd, the mean curvaturesHr are all odd functions. In our setting,
it is also required that the flow takes place in a strongly convex set of the ambient
manifold M nC1. (Recall that a set � �M nC1 is called strongly convex if any two
points of � can be joined by a unique geodesic of M nC1 which is entirely contained
in �.)

THEOREM 4 (Avoidance principle)
Let M n

1 , M n
2 , and M nC1 be complete connected Riemannian manifolds, being M n

2

compact. Assume that W 2 C1.�/ is an odd Weingarten function and that

F i WM n
i � Œ0; T /!��M nC1; i D 1; 2

are W -flows, where � is a strongly convex open set of M nC1. Under these conditions,
we have that the function

D.t/ WD dist2
�
F 1t .M1/;F

2
t .M2/

�
; t 2 Œ0; T /

is not decreasing. In particular, if F 10 .M1/ and F 20 .M2/ are disjoint, then F 1t .M1/ and
F 2t .M2/ are disjoint for all t 2 Œ0; T /.

As a consequence of the avoidance principle, if M nC1 is either a space form QnC1�

or a hyperbolic space Hm
F

, then a W -flow Ft WM
n!M nC1 of a compact manifold

M collapses in a finite time T , provided that W is odd or Ft is an embedding for all
t 2 Œ0; T / (see Corollary 5 in Section 3).

In our final result, we show that Weingarten flows defined by odd Weingarten func-
tions preserve embeddedness.

THEOREM 5
Let M nC1 be a complete connected Riemannian manifold. Assume that W 2 C1.�/
is an odd Weingarten function and that

F WM n � Œ0; T /!M nC1

is a W -flow of a compact connected Riemannian manifold M . Under these conditions,
if the initial data F0 is an embedding, then Ft is an embedding for all t 2 Œ0; T /.

The paper is organized as follows. In Section 2, we establish general facts on W -flows
by parallel hypersurfaces and present the proofs of Theorems 1–3. We also apply these
results to determine the collapsing time of some W -flows in QnC1� and Hm

F
as well. In

Section 3, we provide the proofs of Theorems 4 and 5.
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2. W -flows by parallel hypersurfaces

The following result gives us a way of obtaining Weingarten flows by parallel hyper-
surfaces. An interesting property of such a flow is that its hypersurfaces are all W -
hypersurfaces.

PROPOSITION 1
Given a Weingarten function W 2 C1.�/, let Ft be a parallel '-flow as in (2), and
assume that WFt is well defined for all t 2 Œ0; T /. Then Ft is a solution to (1) with
initial data f D F0 if and only if the function ' satisfies

(4) '0.t/DW.p; t/ 8.p; t/ 2M � Œ0; T /:

If so, Ft WM n!M nC1 is a W -hypersurface for all t 2 Œ0; T /.

Proof
From (2), we have that

@F

@t
.p; t/D d expp

�
'.t/N.p/

�
'0.t/N.p/D '0.t/N.p; t/:

This, together with (3), gives that Ft D F.�; t / satisfies (1) if and only if ' satisfies
(4). In particular, if this equality holds, the Weingarten function WFt is constant on M
(possibly depending on t )—that is, Ft is a W -hypersurface of M . �

As an immediate consequence of Proposition 1, we have the following corollary.

COROLLARY 1
Given a Weingarten function W 2 C1.�/, let us suppose that

(5) F WD
®
f£ WM

n!M nC1I£ 2 .�ı; ı/
¯

is a family of parallelW -hypersurfaces ofM defined by f£.p/D expp.£N.p//, where
N is the unit normal to f D f0. Then, writing W.£/DWf£ , we have that the solution
£D '.t/ of the initial value problem

(6)

´
£0 DW.£/

£.0/D 0

determines a parallel '-flow solution to (1).

As we pointed out in the introduction, the fact that hypersurfaces of parallel W -flows
are W -hypersurfaces suggests the consideration of isoparametric hypersurfaces. We
emphasize that here, by abuse of terminology, a one-parameter family f£ W M n !

M nC1 of parallel hypersurfaces is called isoparametric if, for each £, any principal
curvature function ki of f£ is constant on M (possibly depending on £). In this case,
each hypersurface f£ is also called isoparametric.

Given a Weingarten functionW 2 C1.�/, it is clear that any isoparametric hyper-
surface f W M n ! M nC1 is a W -hypersurface, provided that Wf is well defined.
Therefore, in view of Corollary 1, we have the following result.
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COROLLARY 2
Suppose that f WM n!M nC1 is an isoparametric hypersurface. Then, for any Wein-
garten function W 2 C1.�/ for which Wf is well defined, there exists a unique solu-
tion to (1) by parallel hypersurfaces with initial data f .

2.1. Parallel W -flows in space forms
Let us apply the results so far obtained to studyW -flows in the simply connected space
forms QnC1� . In view of Corollary 2, we shall consider the isoparametric hypersurfaces
of these spaces. (For details and proofs on this subject we refer to [4].)

For � � 0, the complete isoparametric hypersurfaces of QnC1� are totally classified.
They are as follows:

(i) the totally geodesic hyperplanes Qn� �QnC1�

(ii) the geodesic spheres
(iii) the generalized cylinders Qn�k� � Sk , where Qn�k� is a totally geodesic

submanifold of QnC1� of dimension n� k < n and Sk is the k-dimensional
unit sphere

(iv) the horospheres of HnC1

(v) the equidistant hypersurfaces to totally geodesic hyperplanes of HnC1

In fact, for � � 0, any isoparametric hypersurface of QnC1� is necessarily an open
set of one of the complete hypersurfaces listed above.

We point out that, in the cases (ii) and (iii), the isoparametric hypersurfaces have
focal points. More specifically, any geodesic sphere has a unique focal point, which is
its center, and the focal set of a generalized cylinder Qn�k� � Sk is the totally geodesic
submanifold Qn�k� . In such cases, we shall take the focal distance as the parameter for
a family of isoparametric hypersurfaces; that is, if

F D ¹f£ WM
n!QnC1� I£ 2 I �Rº

is such a family, then £ is the distance from f£.M/ to its focal set. For instance, if F is
a family of concentric geodesic spheres, then M D Sn, I D Œ0;C1/ and £ > 0 is the
radius of f£.Sn/.

We also observe that all of the above isoparametric hypersurfaces are connected,
orientable, properly embedded, and convex. (By convex, we mean that with the inward
orientation, which is the one we shall adopt here, the principal curvatures of the hyper-
surface are all nonnegative.) In addition, the isoparametric hypersurfaces in (ii), (iv),
and (v) are all strictly convex—that is, all their principal curvatures are positive every-
where.

Proof of Theorem 1
First, let us write

F D ¹f£WM
n!QnC1� I£ 2 I �Rº

for the isoparametric family of complete hypersurfaces of QnC1� (defined in a maximal
interval I �R) such that f D f£0 , £0 2 I . From the convexity of the hypersurfaces f£,
and from the positivity of W on �C, we have that Wf£ � 0 for all £ 2 I .
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If F is a family of horospheres, then I D R and, for any £ 2 R, all principal cur-
vatures of f£ are equal to 1, which implies that Wf£ DW is a positive constant inde-
pendent of £. Hence, by Corollary 1, the function '.t/DW t , t 2 Œ0;C1/, determines
a '-flow Ft which is a solution to (1) with initial data f£0 ; namely,

Ft D fW tC£0 ; t 2 Œ0;C1/:

Clearly, for all t > 0, Ft .M/ is a horosphere of HnC1 contained in the open horoball
bounded by f .M/. This proves (i).

Assume now that F is a family of equidistant hypersurfaces to a totally geodesic
hyperplane … � HnC1. In this case, I D R, and the parameter £ > 0 is the distance
from f£.M/ to …. We can assume, without loss of generality, that £0 > 0. Let ' W
Œ0; T /!R be the solution of (6) defined in a maximal interval Œ0; T /. Then

Ft D f£0�'.t/; t 2 Œ0; T /

is a solution to (1) satisfying F0 D f£0 . Assume, by contradiction, that T < C1. If
'.T /D £0, then the flow Ft can be extended beyond T just by setting Ft D f0 for t �
T (since, by the homogeneity of W , W.0; 0; : : : ; 0/D 0), contradicting the maximality
of T . Analogously, if '.T / < £0, we have that FT D f£0�'.T / is well defined, so that
we can extend the flow Ft beyond T—again a contradiction. Therefore, T DC1.

If '.t0/D £0 for some t0 2 .0;C1/, then Ft .M/D… for all t � t0. Hence, we
can assume that ' is bounded above by £0. In this case, since Ft .M/ moves toward …,
the principal curvatures of Ft are positive decreasing functions of t . This, together with
the monotonicity property of W , gives that the function W.'.t// (DWFt DWf£0�'.t/ )
decreases as t !C1. Since '0.t/D W.'.t//, we conclude that '00.t/ < 0—that is,
' is positive, increasing, concave, and bounded on Œ0;C1/. These properties clearly
imply that '0.t/! 0 as t!C1. Therefore,

Wf0 D 0D lim
t!C1

'0.t/D lim
t!C1

W
�
'.t/

�
D lim
t!C1

Wf£0�'.t/
;

which yields limt!C1 '.t/D £0. Consequently, Ft ! f0 as t !C1, which shows
assertion (ii).

Finally, let us suppose that F is a family of concentric geodesic spheres of QnC1�

(the argument for generalized cylinders is analogous). In this setting, let ' W Œ0; T /!R

be the solution of (6), so that Ft D f£0�'.t/ is the solution to (1) satisfying F0 D f£0 .
Since Ft .M/ flows toward the center of the spheres f£.M/, we have that '.t/ < £0
for all t 2 Œ0; T /, and also that W.'.t// D '0.t/ is a positive increasing function of
t . Thus, '00 > 0—that is, ' is bounded, increasing, and strictly convex, which clearly
implies that T <1. Moreover, we must have '.T / D £0. Otherwise, arguing as in
the preceding paragraph, we derive a contradiction by extending ' beyond T . This
completes the proof of (iii), and so of the theorem. �

Let us consider now the isoparametric hypersurfaces of SnC1. A well-known result
asserts that any such hypersurface has exactly g distinct principal curvatures, where
g 2 ¹1; 2; 3; 4; 6º. The case gD 1, for instance, corresponds to the geodesic spheres of
SnC1. Rather than using the classification theorems for isoparametric hypersurfaces of
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SnC1, we shall consider their characterization in terms of level sets of homogeneous
polynomials, as done by Münzner [10] (see also [4]).

To clearer, let f WM ! SnC1 be a complete isoparametric hypersurface with g
distinct principal curvatures. Münzner’s result asserts that f .M/ is the intersection of
SnC1 with a level set P�1.c/, c 2 .�1; 1/, of a homogeneous polynomial function P W
RnC2!R of degree g satisfying certain differential equations. Distinct level sets of P
are necessarily parallel in SnC1, and the focal set of this parallel family has precisely
two connected components, which are the intersections of SnC1 with P�1.�1/ and
P�1.1/. In addition, given p 2M , if we write � W .0;�=g/! SnC1 for the normalized
geodesic from P�1.1/ to P�1.�1/ which is orthogonal to f at p D �.£/ and set the
positive orientation N.p/D �� 0.£/ for f , then its g distinct principal curvatures are
given by

(7) ki D cot
�
£C .i � 1/

�

g

�
; 1� i � g:

In this setting, £ 2 .0;�=g/ is the focal distance from f .M/ to P�1.1/. Also, all prin-
cipal curvatures of f increase as £ decreases to 0 and decrease as £ increases to �=g.
We shall denote the multiplicity of ki by mi .

Summarizing, we have that any isoparametric hypersurface of SnC1 with g distinct
principal curvatures is an open subset of an element of a family

F D
®
f£WM ! SnC1I£ 2 .0;�=g/

¯
of complete isoparametric hypersurfaces such that f£.M/ is at a distance £ from the
focal component FC WD P

�1.1/. For � as above, the family F is said to be positively
oriented if the unit normal N of any f£ 2F at pD �.£/ is N.p/D�� 0.£/.

Proof of Theorem 2
Suppose that, for some £0 2 .0;�=g/, Wf£0 > 0. In this case, if the function £ 7!
Wf£0�£ is increasing on Œ0; £0/, the '-flow

Ft D ft�'.t/; '.0/D 0; '0.t/DWft�'.t/ ;

moves toward FC with increasing velocity. Hence, arguing as in the proof of Theo-
rem 1, case (iii), we conclude that Ft .M/ collapses into FC at t D '�1.£0/.

Analogously, if Wf£0 < 0 and the function £ 7!Wf£0C£
is decreasing on the inter-

val Œ0;�=g � £0/, then Ft .M/ collapses into the focal component F� WD P
�1.�1/ at

t D '�1.£0 � �=g/. �

Let us see now that Theorem 2 applies when W is either the higher-order mean curva-
ture Hr or the squared norm of the second fundamental form kAk2.

Let F be as in Theorem 2. Then, in any open interval .0; £0/, 0 < £0 < �=g, we
have that k£1 D cot£ is unbounded, whereas k£i D cot.£C .i � 1/�=g/, i D 2; : : : ; g, is
bounded. Assuming that the multiplicity m1 of k£1 (which is the same for all £) satisfies
m1 � r , where r 2 ¹1; : : : ; n� 1º, the r th mean curvature Hr.£/ of f£ is given by

Hr.£/D

 
m1

r

!
cotr £C

r�1X
iD0

�i .£/ coti £;
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where the functions �i are all bounded in .0; £0/. In particular, if £0 is sufficiently
small, Hr .£0/ > 0, and the function £ 2 Œ0; £0/ 7! Hr.£0 � £/ is increasing. In the
same manner, if r is odd, mg � r , and £0 is sufficiently close to �=g, then Hr.£0/ < 0,
and the function £ 2 Œ0;�=g � £0/ 7! Hr.£0 C £/ is decreasing. Thus, we have the
following.

COROLLARY 3
Theorem 2 applies to the Weingarten function W DHr , 1� r � n� 1. More precisely,
given £0 2 .0;�=g/, if m1 � r (resp. mg � r , r odd), and Hr .£0/ > 0 (resp. Hr.£0/ <
0), the maximal parallel '-flow solution Ft D f£0�'.t/ to Hr -flow with initial data
F0 D f£0 collapses into the focal set FC (resp. F�) at t D '�1.£0/ (resp. t D '�1.£0�
�=g/).

Theorem 2 also applies to the norm of the second fundamental form kAk2 since
kAk2.£0 � £/ is clearly increasing on Œ0; £0/ for all sufficiently small £0 2 .0;�=g/.

COROLLARY 4
Let F be as in Theorem 2. Given a sufficiently small £0 2 .0;�=g/, the maximal par-
allel '-flow solution Ft D f£0�'.t/ to kAk2-flow with initial data F0 D f£0 collapses
into the focal set FC at t D '�1.£0/.

Next, we apply the results of this section to determine the collapsing time of some par-
allelW -flows in QnC1� . For that, we shall consider the trigonometric functions cos� and
sin� as defined in Table 1. The functions tan� , cot� , and sec� are defined accordingly—
that is, tan� D sin�=cos� , cot� D cos�=sin� , and sec� D 1= cos� .

EXAMPLE 1 (Parallel kAk2-flow in Q
nC1
� with spherical initial data)

Let

f WSn!QnC1�

be a (totally umbilical) strictly convex geodesic sphere of QnC1� of radius R > 0 and
principal curvature k D cot�R. Set

R� DW

´
�=2 if �D 1

C1 if �¤ 1

and let

F D
®
f£ W S

n!QnC1� I£ 2 .0;R�/
¯

Table 1. Definition of cos� and sin� .
Function �D 0 �D 1 �D�1

cos�.s/ 1 cos s cosh s
sin�.s/ s sin s sinh s
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be the family of parallel geodesic spheres of QnC1� such that fR D f . By Theorems 1
and 2, for W D kAk2, the flow

Ft WD fR�'.t/; t 2 Œ0; T /;

where ' satisfies

(8) '0.t/DWfR�'.t/ D n cot2�
�
R� '.t/

�
; '.0/D 0;

and is a solution to (1) which collapses into the center of f .Sn/ at time T D '�1.R/.
Separating variables in (8), we obtain the equation

tan2� .R� '/d' D ndt;

which yields

(9)

�
R� '.t/

�3
DR3 � 3nt .for �D 0/;

tan�
�
R� '.t/

�
C '.t/D

1

k
� �nt .for �D˙1/:

Hence, by making t D T D '�1.R/ in (9), one concludes that the collapsing time
T for the kAk2-flow Ft with initial data f is

(10) T D

´
R3

3n
.for �D 0/;

�.1�kR/
kn

.for �D˙1/:

EXAMPLE 2 (Parallel Hr -flow in Q
nC1
� with spherical initial data)

Let f and F be as in the preceding example. For the Hr -flow, the differential equation
for ' is

(11) '0.t/DWfR�'.t/ D

 
n

r

!
cotr�

�
R� '.t/

�
; '.0/D 0;

which separates as

(12) tanr�.R� '/d' D

 
n

r

!
dt:

For �D 0, the solution ' is given implicitly by

.R� '.t//rC1

r C 1
D
RrC1

r C 1
�

 
n

r

!
t;

which yields

T D

 
n

r

!�1
RrC1

r C 1

for the collapsing time of Ft .
For � D˙1, integration on the left-hand side of (12) is recurrent. In Table 2, we

list the solutions ' and corresponding collapsing times for r D 1; 2.
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Table 2. Function ' and collapsing time T for spherical parallelHr -flows.
r ' T

1 cos�.R� '.t//D e�ntcos�R �
n

log.1= cos�R/

2 tan�.R� '.t//C '.t/D 1
k
� � n.n�1/

2
t 2�.1�kR/

kn.n�1/

EXAMPLE 3 (Parallel K-flow in SnC1 with nonspherical initial data)
Consider an isoparametric family F of hypersurfaces f£ WM n! SnC1, £ 2 .0;�=2/,
with two distinct principal curvatures

k£1 D cot£ and k£2 D cot.£C �=2/D� tan£;

whose multiplicities are m1 and m2, respectively. By a result due to Cartan, M is
homeomorphic to the product Sm1 � Sm2 , and the focal components F� and FC are
isometric to the standard spheres Sm1 and Sm2 , respectively. Assuming m2 even, we
have that the Gaussian curvature K.£/ of f£ is

K.£/D cotm1.£/ tanm2.£/;

which is clearly a positive function on .0;�=2/.
If m1 D m2, then K D 1 for all £ 2 .0;�=2/. In this case, given £0 2 .0;�=2/,

the flow Ft D f£0�t is a solution to K-flow with initial data f£0 and collapsing time
T D £0.

Ifm1 >m2, the functionK.£0�£/D cotm1�m2.£0�£/ is increasing in Œ0; £0/. So,
considering the solution ' of £0 DK.£/ such that '.0/D 0, we have from Theorem 2
that the flow Ft D f£0�'.t/ collapses into FC at T D '�1.£0/. In addition, setting
m D m1 � m2, we obtain the function ' and the collapsing time T by integrating
tanm.£0 � '/ with respect to ', as in the preceding example. For instance, if mD 1,
the implicit equation for ' and collapsing time T are

cos
�
£0 � '.t/

�
D etcos£0 and T D log.sec£0/:

An analogous reasoning applies if m2 is odd and m1 < m2, in which case Ft
collapses into F� at T D '�1.£0 � �=2/.

2.2. Parallel W -flows in rank-one symmetric spaces
Let us consider now the rank-one symmetric spaces of noncompact type, which are
precisely the hyperbolic spaces described through the four normed division algebras:
R (real numbers), C (complex numbers), K (quaternions), and O (octonions). They are
denoted by Hm

R
, Hm

C
, Hm

K
, and H2

O
and called real hyperbolic space, complex hyper-

bolic space, quaternionic hyperbolic space, and Cayley hyperbolic plane, respectively.
The real hyperbolic space is HnC1 (i.e., the simply connected space form of constant
sectional curvature �1). We shall adopt the unified notation Hm

F
for these hyperbolic

spaces, where m D 2 for F D O. The real dimension of Hm
F

is nC 1 D mdimF. In
particular, H2

O
has dimension nC 1D 16.

We add that any hyperbolic space Hm
F

is a Hadamard manifold. After a suitable
scale of its metric, its sectional curvatures vary in the interval Œ�1;�1=4�. Moreover,
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its geodesic spheres and horospheres are all isoparametric and strictly convex (see [2]
for details and proofs).

Proof of Theorem 3
Suppose that f .M/ is a geodesic sphere, and set

(13) F D
®
f£ W S

n!Hm
F
I£ 2 .0;C1/

¯
for the isoparametric family of geodesic spheres of Hm

F
such that f D f£0 for some

£0 2 .0;C1/. (Recall that the parameter £ is the radius of f£.Sn/.)
The principal curvatures k£i of f£ with respect to the inward orientation are

(14)

k£1 D coth.£/ with multiplicity q

k£2 D
1

2
coth.£=2/ with multiplicity n� q;

where q D n for HnC1
R

, q D 1 for Hm
C

, q D 3 for Hm
K

, and q D 7 for H2
O

(see, e.g., [4,
pp. 353 and 543] and [8]). In particular, we have

lim
£!0

k£i DC1; i D 1; 2:

From the above considerations (and the monotonicity property of W ), just as in
the real case, we conclude that the parallel '-flow with initial data f D f£0 collapses
to its center at T D '�1.£0/.

As we pointed out, the horospheres of any hyperbolic space Hm
F

are isoparametric.
In fact, as in the real case, they foliate Hm

F
and have all the same constant principal

curvatures (cf. the proposition on p. 88 of [2]). So, any horosphere of Hm
F

moves indef-
initely with constant speed under any W -flow. �

In the next example, we calculate the collapsing time of a geodesic sphere of Hm
F

mov-
ing under H -flow.

EXAMPLE 4 (Parallel H -flow in Hm
F

with spherical initial data)
Let F be as in (13). Then the mean curvature H.£/ of f£ is

H.£/D q coth.£/C
n� q

2
coth.£=2/:

Given R 2 .0;C1/, by Corollary 1 and Theorem 3, the flow

Ft WD fR�'.t/; t 2 Œ0; T /;

where ' satisfies

(15)

´
'0.t/DH.R� '.t//D q coth.R� '.t//C n�q

2
coth..R� '.t//=2/

'.0/D 0;

is a solution to (1) with initial data fR which collapses into the center of fR.Sn/ at
time T D '�1.R/.
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From (15), we obtain the equation

d'

q coth.R� '/C ..n� q/=2/ coth..R� '/=2/
D dt:

Setting x D eR�' and integrating the resulting rational function f .x/=g.x/ by means
of the identities

�
R

x dx
ax2CbxCc

D 1
2a

log jax2C bxC cj � b
2a

R
dx

ax2CbxCc
CC ,

�
R

dx
x.ax2CbxCc/

D 1
2c

log j x2

ax2CbxCc
j � b

2c

R
dx

ax2CbxCc
CC ,

we conclude that the solution ' of (15) is given implicitly by

log
� eR�'.t/

a.e2.R�'.t//C 1/C beR�'.t/

�1=a
D t CC.R/;

where aD .nC q/=2, b D n� q, and

C.R/D log
� eR

a.e2R C 1/C beR

�1=a
:

Therefore, the collapsing time T D '�1.R/ is

T D log
�a.e2R C 1/C beR

2neR

� 1
a

:

3. Avoidance principle for Weingarten flows

In this section, we prove Theorem 4, which constitutes an avoidance principle for Wein-
garten flows whose corresponding Weingarten functions are odd, as we mentioned in
the introduction. The fundamental property of such a W -flow Ft WM

n!M nC1 is that
it is invariant under change of orientation. Indeed, given .p; t/ 2M � Œ0; T /, writing
ki D ki .p; t/ and N DN.p; t/, one has

W.�k1; : : : ;�kn/.�N/D �W.k1; : : : ; kn/.�N/

DW.k1; : : : ; kn/N(16)

D
@F

@t
.p; t/:

Along the proof of Theorem 4, we shall consider graphs over tangent spaces of
hypersurfaces, as described below.

Let f WM n!M nC1 be an oriented hypersurface. Fix p 2M , and let U � TpM
be an open neighborhood of the zero vector of the tangent space of M at p. Given a
function 	 2 C1.U /, we call the set (assuming it is well defined)

˙� WD
®
expf .p/

�
vC 	.v/N.p/

�
2M Iv 2U

¯
the graph of 	 on U . Here, exp denotes the exponential map of M nC1.

Clearly, ˙� is an orientable hypersurface of M nC1. Moreover, it is a well-known
fact that, if the zero vector 0 2 U is a critical point of 	, then the Hessian of 	 at 0
coincides with the second fundamental form of ˙� at p D expf .p/.	.0/N.p// 2˙� .
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In this case, we consider in ˙� the orientation such that the unit normal to ˙� at Np is
(cf. [3, Theorem 3, p. 198]):

N�. Np/D d expf .p/
�
	.0/N.p/

�
N.p/:

Notice that, if � W Œ0;L�!M nC1 is the normalized geodesic from f .p/ to Np satisfying
� 0.0/DN.p/, then N�. Np/D � 0.L/.

The following elementary result, which will be useful to us, compares principal
curvatures of graphs whose corresponding functions have a common critical point. We
adopt the convention of ordering the principal curvatures as k1 � � � � � kn.

LEMMA 1
With the above notation, assume that 	;� 2 C1.U / satisfy � � 	 on U , and that
the null vector 0 2 U is a minimum of � � 	. Then any principal curvature of ˙�
at p D expf .p/.�.0/N.p// is greater than or equal to the corresponding principal
curvature of ˙� at q D expf .p/.	.0/N.p//.

Proof
Since 0 is a minimum of ��	, we have that the Hessian of ��	 at 0 is positive semi-
definite, which implies that the same is true for the operator A� �A� , where A� and
A� are the shape operators of ˙� at Nq and ˙� at Np, respectively. However, a standard
result in linear algebra (see theorem on p. 130 in [5]) asserts the following: If A is
self-adjoint and B is positive semi-definite, then the eigenvalues of A do not exceed the
corresponding ones of AC B . Hence, setting AD A� and B D A� � A� , the lemma
follows. �

The next result, due to Hamilton [6] (see also [9]), will play a fundamental role in the
sequel.

LEMMA 2 (Hamilton’s trick)
Let uWM � Œ0; T /! R be a C 1 function with the following property: For each t0 2
Œ0; T /, there exist ı > 0 and a compact subset � �M � @M such that, for any t 2
.t0 � ı; t0C ı/, the minimum

umin.t/ WD min
p2M

u.p; t/

is attained (at least) at one point of �. Then the function umin is locally Lipschitz in
.0;T / and, for each t 2 .0;T / where it is differentiable, one has

u0min.t/D
@u

@t
.p0; t /;

where p0 2M � @M is any interior point at which u.�; t / attains its minimum.

Proof of Theorem 4
Since M2 is compact, for each t 2 .0;T /, there exists a pair .p1; p2/ 2M1 �M2 (pos-
sibly depending on t ) such that

(17) D.t/D dist2
�
F 1t .p1/;F

2
t .p2/

�
:
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In addition, dist2 is smooth on �, which implies that the function

u.p; q; t/ WD dist2
�
F 1t .p/;F

2
t .q/

�
; .p; q; t/ 2M1 �M2 � Œ0; T /

is smooth as well. Thus, Hamilton’s trick applies and gives that D.t/ D umin.t/ is
locally Lipschitz, so that D is differentiable almost everywhere (by Rademacher’s the-
orem). Also, at a differentiable point t0, the following equality holds:

(18) D0.t0/D
@u

@t
.p1; p2; t0/;

where .p1; p2/ 2M1 �M2 is any pair at which u.�; t0/ attains its minimum. So, it
suffices to prove that D0.t0/ � 0. This is certainly true if D.t0/D 0 (since D is non-
negative), so that we can assume D.t0/¤ 0.

In the above setting, the minimizing normalized geodesic �t0 W Œ0;L�!M joining
the points Np1 WD F 1t0.p1/ and Np2 WD F 2t0.p2/ is orthogonal to both F 1t0.M1/ (at Np1 D
�t0.0/) and F 2t0.M2/ (at Np2 D �t0.L/).

Let us denote by… the tangent space of F 1t0.M1/ at Np1. It is easily checked that, for
i D 1; 2, there exists an open neighborhood U of 0 in … such that, for all t sufficiently
close to t0, in a suitable neighborhood of Npi in M , F it .Mi / is a graph of a function
	it 2 C

1.U /. In particular, we have 	2t > 	
1
t on U . Also, since Npi D 	it0.0/, we have

that 0 2U is a minimum of 	2t0 � 	
1
t0

on U .
By (16), we can assume that N 1

t0
.p1/D �

0.0/ and N 2
t0
.p2/D �

0.L/. In this case,
from Lemma 1, no principal curvature of F 1t0.M1/ at p1 exceeds the corresponding
one of F 2t0.M2/ at p2. Therefore, from the monotonicity property of the Weingarten
function W , the following inequality holds:

(19) WF 1t0
.p1/�WF 2t0

.p2/:

Now observe that the gradient of the squared distance function of M at the point
. Np1; Np2/ 2M �M is the vector r dist2. Np1; Np2/D 2dist. Np1; Np2/.�� 0t0.0/; �

0
t0
.L//. So,

(20) r dist2. Np1; Np2/D 2dist. Np1; Np2/
�
�N 1

t0
.p1/;N

2
t0
.p2/

�
2 T Np1M � T Np2M:

Putting together identities (17)–(20), and considering the fact that F 1t and F 2t are
both W -flows, we have

D0.t0/D
@

@t
dist2

�
F 1.p1; t /;F

2.p2; t /
�
jtDt0

D
D
r dist2. Np1; Np2/;

�@F 1
@t

.p1; t0/;
@F 2

@t
.p2; t0/

�E
M�M

D 2dist. Np1; Np2/
�
�WF 1t0

.p1/CWF 2t0
.p2/

�
� 0;

as we wished to prove. �

In the above proof, the hypothesis of W being odd allowed us to choose the orientation
of the hypersurfaces F it0 at pi , i D 1; 2, in such a way that their unit normals at these
points would coincide with � 0.0/ and � 0.L/. In this manner, we could apply Lemma 1
and then obtain the fundamental inequality (19). From this, we conclude that we can
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drop the assumption on W being odd in the statement of the avoidance principle, as
long as we have ensured that the orientations of F it follow this pattern.

For instance, suppose that Ft WM n!M nC1, t 2 Œ0; T /, is a W -flow, where M n

is compact, and M nC1 is either a space form QnC1� or a hyperbolic space Hm
F

. Assume
that F0.M/ is contained in an open totally convex ball BR �M nC1, whose boundary
@BR is a strictly convex geodesic sphere of M nC1 (i.e., 0 < R < �=2 for M nC1 D

SnC1). In this setting, considering the parallel flow Pt WS
n!M nC1 with initial data

P0.S
n/D @BR and inward orientation, and assuming that Ft is an embedding with the

inward orientation for all t 2 Œ0; T /, we have that the normals at the points minimiz-
ing the distance between Ft .M/ and Pt .M/ coincide with the tangent vectors to the
minimizing geodesic joining them, as in the above case. Thus, the avoidance principle
holds. In particular, by the results of the preceding section, Ft has a finite collapsing
time which is at most equal to that of Pt .

Summarizing, we have the following result.

COROLLARY 5
LetM nC1 be either a space form QnC1� or a hyperbolic space Hm

F
. Given a Weingarten

functionW 2 C1.�/, assume that F WM n� Œ0; T /!M nC1 is aW -flow of a compact
Riemannian manifold M such that F0.M/ is contained in an open totally convex ball
BR � M

nC1, whose boundary @BR is a strictly convex geodesic sphere of M nC1.
Assume further that one of the following holds:

� W is odd.
� Ft is an embedding with the inward orientation for all t 2 Œ0; T /.

Under these conditions, denoting by

P W Sn � Œ0; TR/!M nC1

the parallel W -flow with inward orientation, collapsing time TR, and initial data
P0.S

n/D @BR, we have that Ft .M/\Pt .S
n/D; for all t 2 Œ0; T /. Consequently, the

inequalities T � TR <1 hold.

Proof of Theorem 5
Since F0 is an embedding, for any sufficiently small t > 0, Ft is also an embedding.
Let us suppose, by contradiction, that there exists a first time t0 > 0 such that Ft0 is not
an embedding. In this way,

� WD
®
.p; q/ 2M �M Ip¤ q;Ft0.p/D Ft0.q/

¯
is a nonempty compact set ofM �M which is disjoint from the diagonalD ofM �M .
Thus, there is an open set U �M �M such that D � U and � is disjoint from the
closure of U in M �M .

Now, observing that V WD .M �M/�U is compact inM �M , define the function

D.t/D min
.p;q/2V

dist2
�
Ft .p/;Ft .q/

�
; t 2 Œ0; t0�:
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Since, for a sufficiently small t , Ft is an embedding, for such a t we have D.t/ > 0.
However, proceeding just as in the proof of Theorem 4, we conclude that D is nonde-
creasing, which contradicts the fact that D.t0/D 0. �
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